ArticleOriginal scientific text

Title

A concavity property for the measure of product sets in groups

Authors 1

Affiliations

  1. Mathematical Institute, Hungarian Academy of Sciences, Budapest, Pf. 127, H-1364 Hungary

Abstract

Let G be a connected locally compact group with a left invariant Haar measure μ. We prove that the function ξ(x) = inf {μ̅(AB): μ(A) = x} is concave for any fixed bounded set B ⊂ G. This is used to give a new proof of Kemperman's inequality μ̲(AB)min(μ̲(A)+μ̲(B),μ(G)) for unimodular G.

Bibliography

  1. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Springer, New York 1963.
  2. Kemperman, On products of sets in a locally compact group, Fund. Math. 56 (1964), 51-68.
  3. Kneser, Summenmengen in lokalkompakten abelschen Gruppen, Math. Z. 66 (1956), 88-110.
  4. Macbeath, On measure of sum sets II. The sum-theorem for the torus, Proc. Cambridge Philos. Soc. 49 (1953), 40-43.
  5. Plünnecke, Eigenschaften und Abschätzungen von Wirkungsfunktionen, Ges. Mathematik und Datenverarbeitung, Bonn 1969.
  6. Raikov, On the addition of point sets in the sense of Schnirelmann, Mat. Sb. 5 (47) (1939), 425-440 (in Russian).
  7. Shields, Sur la mesure d'une somme vectorielle, Fund. Math. 42 (1955), 57-60.

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm140/fm14034.pdf

Pages:
247-254
Main language of publication
English
Received
1991-06-24
Published
1992
Exact and natural sciences