ArticleOriginal scientific text

Title

On weakly infinite-dimensional subspuees

Authors 1

Affiliations

  1. Department of Mathematics, Free University, de Boelelaan 1081, 1081 Hv Amsterdam, The Netherlands

Abstract

We will construct weakly infinite-dimensional (in the sense of Y. Smirnov) spaces X and Y such that Y contains X topologically and dimY=ω0 and dimX=ω0+1. Consequently, the subspace theorem does not hold for the transfinite dimension dim for weakly infinite-dimensional spaces.

Keywords

weakly infinite-dimensional, transfinite dimension

Bibliography

  1. [B1] P. Borst, Classification of weakly infinite-dimensional spaces. Part I: A transfinite extension of the covering dimension, Fund. Math. 130 (1988), 1-25.
  2. [B2] P. Borst, Classification of weakly infinite-dimensional spaces. Part II: Essential mappings, ibid., 73-99.
  3. [Ch] V. A. Chatyrko, On the transfinite dimension dim, to appear.
  4. [E1] R. Engelking, General Topology, PWN, Warszawa 1977.
  5. [E2] R. Engelking, Dimension Theory, PWN, Warszawa 1978.
  6. [He] D. W. Henderson, A lower bound for transfinite dimension, Fund. Math. 63 (1968), 167-173.
  7. [L] L. A. Lyuksemburg, On transfinite inductive dimensions, Soviet Math. Dokl. 14 (1973), 388-393.
  8. [P] R. Pol, On classification of weakly infinite-dimensional compacta, Fund. Math. 116 (1983), 169-188.

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm140/fm14032.pdf

Pages:
225-235
Main language of publication
English
Received
1990-11-12
Accepted
1991-01-25
Published
1992
Exact and natural sciences