ArticleOriginal scientific text
Title
On weakly infinite-dimensional subspuees
Authors 1
Affiliations
- Department of Mathematics, Free University, de Boelelaan 1081, 1081 Hv Amsterdam, The Netherlands
Abstract
We will construct weakly infinite-dimensional (in the sense of Y. Smirnov) spaces X and Y such that Y contains X topologically and and . Consequently, the subspace theorem does not hold for the transfinite dimension dim for weakly infinite-dimensional spaces.
Keywords
weakly infinite-dimensional, transfinite dimension
Bibliography
- [B1] P. Borst, Classification of weakly infinite-dimensional spaces. Part I: A transfinite extension of the covering dimension, Fund. Math. 130 (1988), 1-25.
- [B2] P. Borst, Classification of weakly infinite-dimensional spaces. Part II: Essential mappings, ibid., 73-99.
- [Ch] V. A. Chatyrko, On the transfinite dimension dim, to appear.
- [E1] R. Engelking, General Topology, PWN, Warszawa 1977.
- [E2] R. Engelking, Dimension Theory, PWN, Warszawa 1978.
- [He] D. W. Henderson, A lower bound for transfinite dimension, Fund. Math. 63 (1968), 167-173.
- [L] L. A. Lyuksemburg, On transfinite inductive dimensions, Soviet Math. Dokl. 14 (1973), 388-393.
- [P] R. Pol, On classification of weakly infinite-dimensional compacta, Fund. Math. 116 (1983), 169-188.
Additional information
http://matwbn.icm.edu.pl/ksiazki/fm/fm140/fm14032.pdf