ArticleOriginal scientific text
Title
A characterization of dendroids by the n-connectedness of the Whitney levels
Authors 1
Affiliations
- Instituto de Matemáticas, Area de la Investigación Científica, Circuito Exterior, Ciudad Universitaria, C.P. 04510 México, D.F., México
Abstract
Let X be a continuum. Let C(X) denote the hyperspace of all subcontinua of X. In this paper we prove that the following assertions are equivalent: (a) X is a dendroid, (b) each positive Whitney level in C(X) is 2-connected, and (c) each positive Whitney level in C(X) is ∞-connected (n-connected for each n ≥ 0).
Bibliography
- C. Eberhart and S. B. Nadler, Jr., The dimension of certain hyperspaces, Bull. Acad. Polon. Sci. 19 (1971), 1027-1034.
- S. Eilenberg, Transformations continues en circonférence et la topologie du plan, Fund. Math. 26 (1936), 61-112.
- A. Illanes, Arc-smoothness and contractibility in Whitney levels, Proc. Amer. Math. Soc. 110 (1990), 1069-1074.
- A. Illanes, Spaces of Whitney maps, Pacific J. Math. 139 (1989), 67-77.
- A. Illanes, The space of Whitney levels, Topology Appl., to appear.
- A. Illanes, Spaces of Whitney decompositions, An. Inst. Mat. Univ. Nac. Autónoma México 28 (1988), 47-61.
- A. Illanes, The space of Whitney levels is homeomorphic to
, Colloq. Math., to appear. - A. Illanes, Arc smoothness is not a Whitney reversible property, Aportaciones Mat.: Comun. 8 (1990), 65-80.
- J. Krasinkiewicz and S. B. Nadler, Jr., Whitney properties, Fund. Math. 98 (1978), 165-180.
- S. Mardešić, Equivalence of singular and Čech homology for ANR-s. Application to unicoherence, ibid. 46 (1958), 29-45.
- S. B. Nadler, Jr., Some basic connectivity properties of Whitney maps inverses in C(X), in: Studies in Topology, Proc. Charlotte Topology Conference (University of North Carolina at Charlotte, 1974), Academic Press, New York 1975, 393-410.
- S. B. Nadler, Hyperspaces of Sets, Dekker, New York 1978.
- A. Petrus, Contractibility of Whitney continua in C(X), Gen. Topology Appl. 9 (1978), 275-288.
- L. E. Ward, Jr., Extending Whitney maps, Pacific J. Math. 93 (1981), 465-469.
Additional information
http://matwbn.icm.edu.pl/ksiazki/fm/fm140/fm14024.pdf