ArticleOriginal scientific text

Title

Approximate differentiation: Jarník points

Authors 1, 1

Affiliations

  1. Faculty of Mathematics and Physics (KMA), Charles University, Sokolovská 83, 18600 Praha 8, Czechoslovakia

Abstract

We investigate Jarník's points for a real function f defined in ℝ, i.e. points x for which apyx|f(y)-f(x)y-x|=+. In 1970, Berman has proved that the set Jf of all Jarník's points for a path f of the one-dimensional Brownian motion is the whole ℝ almost surely. We give a simple explicit construction of a continuous function f with Jf=.Themarest̲ofourpapersaystf^oratyπcalcontuousfunctionfon[0,1]thesetJ_f!$! is c-dense in [0,1].

Bibliography

  1. S. M. Berman, Gaussian processes with stationary increments: Local times and sample function properties, Ann. Math. Statist. 41 (1970), 1260-1272.
  2. D. Geman and J. Horowitz, Occupation densities, Ann. Probab. 8 (1980), 1-67.
  3. M. de Guzmán, A general form of the Vitali theorem, Colloq. Math. 34 (1975), 69-72.
  4. V. Jarník, Sur les nombres dérivées approximatifs, Fund. Math. 22 (1934), 4-16.
  5. J. C. Oxtoby, The Banach-Mazur game and Banach category theorem, in: Contribution to the Theory of Games III, Ann. of Math. Stud. 39, Princeton 1957, 159-163.
  6. J. C. Oxtoby, Measure and Category, Springer, New York 1980.
  7. S. Saks, On the functions of Besicovitch in the space of continuous functions, Fund. Math. 19 (1932), 211-219.
  8. S. Saks, Theory of the Integral, Monograf. Mat. 7, Warszawa 1937 (reprinted by Hafner Publ., New York).
  9. L. Zajíček, The differentiability structure of typical functions in C[0,1]), Real Anal. Exchange 13 (1987-88), 119, 103-106, 93.
  10. L. Zajíček, Porosity, derived numbers and knot points of typical continuous functions, Czechoslovak Math. J. 39 (114) (1989), 45-52.

Additional information

http://matwbn.icm.edu.pl/ksiazki/fm/fm140/fm14018.pdf

Pages:
87-97
Main language of publication
English
Received
1991-04-22
Published
1991
Exact and natural sciences