EN
For every cardinal τ and every ordinal α, we construct a metrizable space $M_α(τ)$ and a strongly countable-dimensional compact space $Z_α(τ)$ of weight τ such that $D(M_α(τ)) ≤ α$, $D(Z_α(τ)) ≤ α$ and each metrizable space X of weight τ such that D(X) ≤ α is homeomorphic to a subspace of $M_α(τ)$ and to a subspace of $Z_{α+1}(τ)$.