PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 36 | 1-2 | 67-92
Tytuł artykułu

The asymptotic trace norm of random circulants and the graph energy

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We compute the expected normalized trace norm (matrix/graph energy) of random symmetric band circulant matrices and graphs in the limit of large sizes, and obtain explicit bounds on the rate of convergence to the limit, and on the probabilities of large deviations. We also show that random symmetric band Toeplitz matrices have the same limit norm assuming that their band widths remain small relative to their sizes. We compare the limit norms across a range of related random matrix and graph ensembles.
Twórcy
  • Department of Mathematics and Statistics, University of Houston Downtown, Houston, TX 77002, USA
Bibliografia
  • [1] B. Anderson, J. Ash, R. Jones, D. Rider and B. Saffari, Exponential sums with coefficients 0 or 1 and concentrated Lp norms, Annales de l’Institut Fourier (Grenoble) 57 (5) (2007), 1377-1404.
  • [2] B. von Bahr, On the convergence of moments in the central limit theorem, Ann. Math. Statist. 36 (1965), 808-818.
  • [3] Z. Bai, Methodologies in spectral analysis of large dimensional random matrices: a review, Statistica Sinica 9 (1999), 611-677.
  • [4] S. Blackburn and I. Shparlinski, On the average energy of circulant graphs, Linear Algebra and its Applications 428 (8-9) (2008), 1956-1963.
  • [5] A. Bose and J. Mitra, Limiting spectral distribution of a special circulant, Statistics & Probability Letters 60 (2002), 111-120.
  • [6] W. Bryc and A. Dembo, Spectral measure of large random Hankel, Markov and Toeplitz matrices, Ann. Probab. 34 (1) (2006), 1-38.
  • [7] X. Chen, X. Li and H. Lian, The skew energy of random oriented graphs, Linear Algebra and its Applications 438 (11) (2013), 4547-4556.
  • [8] R. van Dal, G. Tijssen, Z. Tuza, J. van der Veen, C. Zamfirescu and T. Zamfirescu, Hamiltonian properties of Toeplitz graphs, Discrete Math. 159 (1-3) (1996), 9-81.
  • [9] K. Das and I. Gutman, On incidence energy of graphs, Linear Algebra and its Applications 446 (2014), 329-344.
  • [10] A. Daugavet, Convergence rates of some numerical characteristics of distributions in the central limit theorem, Vestnik Leningrad University Mathematics 13 (1981), 175-182.
  • [11] Ph. Davis and Ph. Rabinowitz, Methods of Numerical Integration (Academic Press, Orlando, FL, 1984).
  • [12] W. Du, X. Li and Y. Li, The energy of random graphs, Linear Algebra and its Applications 435 (10) (2011), 2334-2346.
  • [13] A. Ilić and M. Bašic, New results on the energy of integral circulant graphs, Appl. Math. Comput. 218 (7) (2011), 3470-3482.
  • [14] S. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications 94 (Cambridge University Press, Cambridge, 2003).
  • [15] I. Gohberg and M. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Translations of Mathematical Monographs 18 (American Mathematical Society, Providence, 1969).
  • [16] R. Goldberg, Methods of Real Analysis (Wiley & Sons, New York-London-Sydney, 1976).
  • [17] R. Gray, Toeplitz and circulant matrices: a review, Foundations and Trends in Communications and Information Theory 2 (3) (2006), 155-239.
  • [18] U. Grenander and G. Szegö, Toeplitz Forms and Their Applications (University of California Press, Los Angeles, 1958).
  • [19] A. Guionnet and O. Zeitouni, Concentration of the spectral measure for large matrices, Electronic Communications in Probability 5 (2000), 119-136.
  • [20] I. Gutman, Hyperenergetic and hypoenergetic graphs, Zbornik Radova 14 (22) (2011), Selected topics on applications of graph spectra, 113-135.
  • [21] C. Hammond and S. Miller, Distribution of eigenvalues for the ensemble of real symmetric Toeplitz matrices, J. Theor. Probab. 18 (3) (2005), 537-566.
  • [22] V. Kargin, Concentration of the spectral measure for large matrices, Electronic Communications in Probability 14 (2009), 412-421.
  • [23] P. Lancaster, Theory of Matrices (Academic Press, New York, 1969).
  • [24] T. Le and J. Sander, Extremal energies of integral circulant graphs via multiplicativity, Linear Algebra and its Applications 437 (6) (2012), 1408-1421.
  • [25] X. Li, Y. Shi and I. Gutman, Graph Energy (Springer, New York, 2012).
  • [26] M. Meckes, Some results on random circulant matrices, in High dimensional probability V: the Luminy volume, Institute of Mathematical Statistics Collections, 5 (Beachwood, OH, 2009), 213-223.
  • [27] B. McKay, The expected eigenvalue distribution of a large regular graph, Linear Algebra and its Applications 40 (1981), 203-216.
  • [28] M. Miranda and P. Tilli, Asymptotic spectra of Hermitian block Toeplitz matrices and preconditioning results, SIAM Journal on Matrix Analysis and Applications 21 (3) (2000), 867-881.
  • [29] S. Molchanov, L. Pastur and A. Khorunzhii, Distribution of the eigenvalues of random band matrices in the limit of their infinite order, Theor. Math. Phys. 90 (2)(1992), 108-118.
  • [30] V. Nikiforov, The energy of graphs and matrices, J. Math. Anal. Appl. 326 (2) (2007), 1472-1475.
  • [31] V. Nikiforov, Beyond graph energy: Norms of graphs and matrices, Linear Algebra and its Applications 506 (2016), 82-138.
  • [32] V. Nikiforov, Remarks on the energy of regular graphs, Linear Algebra and its Applications 508 (2016), 133-145.
  • [33] L. Paditz, On the analytical structure of the constant in the nonuniform version of the Esseen inequality, Statistics 20 (3) (1989), 453-464.
  • [34] I. Pinelis, On the nonuniform Berry-Esseen bound, (2013), available at http://arxiv.org/abs/1301.2828.
  • [35] H. Ren and F. Zhang, Fully-angular polyhex chains with minimal total p-electron energy, J. Math. Anal. Appl. 326 (2) (2007), 1244-1253.
  • [36] H. Ren and F. Zhang, Double hexagonal chains with maximal Hosoya index and minimal Merrifield-Simmons index, J. Math. Chem. 42 (4) (2007), 679-690.
  • [37] J. Sander and T. Sander, The maximal energy of classes of integral circulant graphs, Discrete Appl. Math. 160 (13-14) (2012), 2015-2029.
  • [38] A. Shiryaev, Probability, Graduate Texts in Mathematics 95 (Springer-Verlag, New York, 1996).
  • [39] M. Talagrand, A new look at independence, Ann. Probab. 24 (1) (1996), 1-34.
  • [40] G. Tee, Eigenvectors of block circulant and alternating circulant matrices, New Zealand J. Math. 36 (2007), 195-211.
  • [41] L. Tran, V. Vu and K. Wang, Sparse random graphs: eigenvalues and eigenvectors, Random Structures Algorithms 42 (1) (2013), 110-134.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1181
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.