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Abstract

Computationally attractive Fisher consistent robust estimation methods
based on adaptive explanatory variables trimming are proposed for the lo-
gistic regression model. Results of a Monte Carlo experiment and a real data
analysis show its good behavior for moderate sample sizes. The method is
applicable when some distributional information about explanatory variables
is available.
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1. Introduction

The logistic model plays important role in predictive inference in many fields:
diagnostics in medicine, behavioral prediction in social and economic processes.
A more recent area of its interesting applications concern the uplift modeling
in marketing. The binary response variable Y of the model satisfies the logistic
equation

Pβ(Y = 1|X = x) =
e[1,x

′]β

1 + e[1,x′]β
,

where X is a k-vector of explanatory variables and β = [β0, β1, . . . , βk] is a vector
of regression parameters. The logistic function, as well as the normal distribu-
tion in the probit model, is supposed to measure the relationship between the
probability of the event of interest and the value of its linear predictor. This
mathematical relationship does not seem to follow precisely from any real phe-
nomena. It is rather a mixture of mathematical convenience and some intuitive
knowledge about a monotone regularity between probability of ’success’ and ex-
planatory variables.
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As for any statistical model, inference based on maximum likelihood may
be very sensitive to ’erroneous’ observations and therefore supplementary robust
data analysis is highly recommended. There is a vast literature on robust in-
ference for the generalized linear models and in particular for the logistic one
[1, 2, 3, 5, 8, 10, 11, 12]. The methods are either based on downweighting the
influential observations or on modification of the likelihood function or both ap-
proaches are used. Some gain in inferential efficiency for the logistic (or probit)
model can be achieved by adjustment of robust methodology to a particular ex-
perimental situation. In contrast to a standard linear regression model, where
outliers in dependent variable alone can do much harm, this is unlikely to happen
for the logistic model, where ’true’ oulyingness is possible only in independent
variable.

The estimation method proposed here for the logistic model is related to
[9, 12] with weighting based exclusively on the design or explanatory variable. It
assumes some prior knowledge about the distribution of the explanatory variables.
In repeated experiments such knowledge is sometimes available and it either has
a distributional character or is implied by, say, physical limitations of studied
objects. Further on we shall assume that this prior knowledge would be an
approximately normal distribution for all or some of the explanatory variables.

2. The method

If (X1, Y1), . . . , (Xn, Yn) denote a random sample of explanatory and dependent
variables then the likelihood function for the logistic model is equal to

Lβ(X,Y ) =
n∏
i=1

(
e[1,X

′
i]β

1 + e[1,X
′
i]β

)Yi (
1

1 + e[1,X
′
i]β

)1−Yi

with the corresponding score function

Sβ =
n∑
i=1

[
1
Xi

](
Yi −

e[1,X
′
i]β

1 + e[1,X
′
i]β

)
.

There are two basic modifications of the score function proposed here. In
both of them it is initially assumed that the constant term in the linear predictor
is equal to zero. The first modification has the form

Swβ =

n∑
i=1

w(Xi)

(
Yi −

ew(Xi)
′β

1 + ew(Xi)′β

)
,(1)

where w(x) = xIB(x) for B a Borel set. The proposed method is equivalent to the
maximum likelihood estimation for the logistic regression for possibly modified
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observations in explanatory variables and under the assumption of zero shift in
the linear predictor.

The second modification assumes the following form of the score function

Swβ =
n∑
i=1

h(w(Xi))

(
Yi −

ew(Xi)
′β

1 + ew(Xi)′β

)
.(2)

Theorem 1. Let us consider the estimation methods given by score functions (1)
and (2).

(a) The data modifying function w(x) = xIB(x) for B a Borel set such that
P (X ∈ B) > 0 gives the conditional Fisher consistency of method 1.

(b) Assume the distribution of X is symmetric around the origin, w is an odd
function, h is even and for some β 6= β0 we have

Eβ0

[
h(w(Xi))(Yi − ew(Xi)

′β

1+ew(Xi)
′β )
]
6= 0. Then method 2 is Fisher consistent.

Proof. Justification of the two facts is elementary. In case (a) we have the
following immediate equalities:

∫
w(x)

(
y − ew(x)

′β

1 + ew(x)′β

)
dPβ0(y|x)dG(x)

=

∫
w(x)

(
1− ew(x)

′β

1 + ew(x)′β

)
Pβ0(y = 1|x)

+ w(x)

(
0− ew(x)

′β

1 + ew(x)′β

)
Pβ0(y = 0|x)]dG(x)

=

∫
w(x)

1

1 + ew(x)′β
ex

′β0

1 + ex′β0
− w(x)

ew(x)
′β

1 + ew(x)′β
1

1 + ex′β0
dG(x)

=

∫
w(x)

1

(1 + ew(x)′β)(1 + ex′β0)

(
ex

′β0 − ew(x)′β
)
dG(x),

where dPβ0(y|x)dG(x) denotes the true model distribution. By the definition of
w we get the zero value of the expression under the integral if β = β0.

The second fact follows then from the symmetry assumption and oddness of
the pseudo-score function. Notice that
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h(w(−x))
1

(1 + ew(−x)′β)(1 + e−x′β0)

(
e−x

′β0 − ew(−x)′β
)

= h(w(x))
ew(x)

′βex
′β

(1 + ew(x)′β)(1 + ex′β0)

(
e−x

′β0 − ew(−x)′β
)

= −h(w(x))
1

(1 + ew(x)′β)(1 + ex′β0)

(
ex

′β0 − ew(x)′β
)
.

A drawback of the first method is a non-smooth structure of the data mod-
ifying function w. The second method allows smooth w′s which is a merit in
estimation since the variance assessment becomes more reliable. Further on we
shall discuss properties of the first method only. The method is meant to be an
intermediate step in any practical implementation of a standard logistic model
(with arbitrary shift) when the distribution of explanatory variables is approxi-
mately normal. In the first step the original data are robustly standardized with
a consequent reparametrization of the model. Then the maximum likelihood
method with standardized data modified by w(x) = xIB(x) is applied. The final
step consists in returning to the original parametrization.

3. Monte Carlo and real data case study

A simulation study was conducted to compare efficiency of the above described
simplified robust estimation procedure (1) with mle and some standard robust
estimates. A logistic model with two dimensional explanatory vector of indepen-
dent standard normal variables X = (X1, X2) was assumed so that

Pβ(Y = 1|X = x) =
eβ0+β1x1+β2x2

1 + eβ0+β1x1+β2x2

and β = (β0, β1, β2) = (0, 1, 1). The sample size was taken n = 300. In con-
taminated samples 5% of the original standard normal vector observations were
replaced by the vectors (0,−k) where for each k taking values 1, 2, . . . , 7 the esti-
mation process was simulated 500 times for the original and contaminated data.
This sort of contamination was chosen because it strongly exhibit efficiency dif-
ferences. The mle was used for the original data and for the contaminated data to
give a reference point. The contaminated data were also estimated with standard
robust methods for the logistic model and the proposed robust method.

The data simulation and estimation process was conducted with R software.
The maximum likelihood estimation was done with glm function while standard
robust estimation with glmRob function of the ’robust’ package. Two robust
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methods were applied: ’mallows’ for Mallow’s leverage downweighting estimator
and ’cubif’ for the conditionally unbiased bounded influence estimator. For the
simplified method the mle was applied to transformed explanatory variables: in
the first step robust location and covariance matrix were computed using covRob
procedure with constrained M estimator. Then for standardized data the mle
was applied under zero value of the shift and B = [−3, 3]×3. Finally using the
obtained robust estimates of shift and covariance matrix final estimates were
obtained.

Figure 1 gives two graphs summarizing the estimation effects. The one on the
left-hand side shows plots of the mean Euclidian distance between estimates and
the vector β = (0, 1, 1) at different contaminating values k. The one on the right-
hand side is the mean angle formed by the vector of estimates (β̂1, β̂2) and (1, 1).
In each case there are four plotted curves: the mle for non-contaminated, the mle
for contaminated samples, robust ’mallows’ estimate for contaminated data and
finally simplified estimation for contaminated samples. The mean distance and
angle of estimators with respect to the true parameter value were employed as
stability characteristics since they may behave differently depending on the data
distribution.

Figure 1. Mean distance (left graph) and angle (right graph) for the mle, standard robust
(rob1) and simplified robust method (rob2).

In spite of the fact that the simplified method ’completely ignores’ the in-
formation from outlying observations, we can see its good behavior compared to
other estimation methods. The ’cubif’ procedure showed similar results. Also
changes in sample size from 100 to 500 did not essentially changed the situa-
tion. We can see that as the contamination values increase, the standard robust
methods start to work better. However, they seem to achieve the efficiency of
the simple method at extremely large outliers values, detectable probably by any
method. The procedures were used in their default form, therefore there might
be a potential for their better behavior.

The following graph depicts assignment of sample units to two classes de-
pending on the estimated success probability value, smaller or greater than 0.5.
To make the visual comparison possible only the non-contaminated data are plot-
ted. The black dots correspond to sample elements for which estimated success
probability was greater than 0.5. We can see that even for relatively small con-
tamination size (k = 4.75) the angular effect differs very much for the presented
methods. The simplified method is very stable and it gives results similar to mle
for non-contaminated data. These classification results would be rather typical
for contamination size k between 4 and 7.
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Figure 2. Exemplary result of classification.

Figure 3. Differences between dependent variable and estimated probabilities for the Feigl
and Zelen (1965) data.

The real data case analyzed below originates from [6] and it was discussed in
[4]. The data are available in R as BGPhazard package. There are four variables
of 33 leukemia patients: time – survival times in weeks from diagnosis, AG –
indicator of positive result of a test related to the white blood cell characteris-
tics, wbc – white blood cells counts in thousands and delta – a status variable
indicating censoring. As in [4] the dependent variable indicating survival longer
than 52 weeks was introduced and logistic model was applied with explanatory
variables AG and wbc. The mle, standard robust and simplified robust methods
were employed. The inferential problem for this data set is that five patients ex-
treme values of wbc = 100 lead to contradictory predictions about survival time
and AG. The trimming value for the explanatory variable in the simplified method
was 69.7 – the mean plus 3 standard deviations computed without the outlying
values of wbc = 100. The three methods indicate significance of AG variable. The
simplified method gave the smallest p-value to wbc p = 0.079 (0.082 for standard
robust and 0.088 for mle) and it led to smallest null and residual deviance. The
graph below shows the residual curves for the three methods.

The simplified method behaves very well for unimodal elliptically symmetric
distributions close to the normal one. Simulations show that the variability of
the method is comparable to other robust methods for the logistic model except
for the case when outliers of robustly standardized data are around the points
of discontinuity of the function w, where the simplified method shows higher
variability. The method also looses its advantage when the distribution of the
vector of explanatory variables is for instance uniformly distributed or it comes
from an asymmetric distribution.

The asymptotic distributions of the proposed estimators are relatively straight-
forward under the assumption that explanatory variables come indeed from the
standard normal population. Otherwise they become more difficult to compute
due to transformations of observed variables by robust estimates of shift and co-
variance. A description of the asymptotic distributions along with their validity
for moderate sample sizes will be given in a subsequent paper.
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