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1. Introduction

Dynamical systems concerning practical applications, like these from optimal con-
trol, mathematical finance etc., are complex and usually not determined uniquely
by the state of the system. That is why, differential equations (or stochastic differ-
ential equations) which usually try to describe these systems, need to be replaced
by more general objects.

One of them are deterministic or stochastic differential inclusions, which were
the subject of several studies (see e.g.: N.U. Ahmed [2, 3, 4], J.P. Aubin, A.
Cellina [5], J.P. Aubin, H. Frankowska [6], J.P. Aubin, G. Da Prato [7], G. Da
Prato, H. Frankowska [10], A. Fryszkowski [13], F. Hiai, H. Umegaki [15], M.
Kisielewicz [16, 17, 18, 19], M. Kisielewicz, M. Michta, J. Motyl [20, 21], M.
Michta, J. Motyl [23, 24], J. Motyl [25, 26, 27], D. Repovš, P.V. Semenov [31]).
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The authors consider in their books and papers how to describe above mentioned
problems in set-valued way. The objects of the study become set-valued processes,
set-valued integrals and the problem of existence of solutions of differential inclu-
sions. The deterministic case was the aim of investigations in [4, 5, 6, 13, 15, 19,
31], while the stochastic case in [2, 3, 10, 14, 16, 17, 18, 20, 21, 23, 24, 25, 26, 27]
and [28, 29, 34]. Most of them consider Itô-type stochastic integral or inclusion.
Only in [14, 23, 24] and [29] the authors analyze Stratonovich-type set-valued
stochastic integral and inclusion.

This work contains two main results: properties of backward stochastic inte-
gral and some properties of the solution set of the Stratonovich-type stochastic
inclusion driven by a semimartingale.

First, we show the connection between backward stochastic integral defined
by F. Russo and P. Vallois in [32] and well known Itô stochastic integral.

Then we present some properties of the solution set of the Stratonovich-type
stochastic inclusion driven by a semimartingale. We show non-emptiness and
closedness of above mentioned set.

To obtain the second mentioned result we use a semimartingale measure
based on the Doléans-Dade measure, see [22, 28]. Its property (SMP-property)
was used in [34] to investigate the Itô-type stochastic inclusion.

In Section 2 we introduce basic definitions and notations used in the pa-
per. Section 3 contains the definition of a semimartingale measure, its properties
and application to set-valued analysis. In Section 4 we define Stratonovich-type
single- and set-valued stochastic integrals and present some properties of de-
fined integrals. Section 5 contains the existence and closedness theorems for
Stratonovich-type stochastic inclusion.

2. Preliminaries

Throughout the paper let (Ω,F ,F, P ) be a complete filtered probability space,
where F = (Ft)0≤t≤1 denotes a filtration satisfying the usual hypothesis, i.e. it
contains all P -null sets and it is right continuous.

By a stochastic process x on (Ω,F , P ) we mean a collection x = (xt)t∈[0,1]
of n-dimensional random variables xt : Ω → IRn, t ∈ [0, 1]. The process x is F-
adapted if xt is Ft-measurable for each t ∈ [0, 1]. A stochastic process x is càdlàg
(càglàd) if it has right continuous sample paths with left limits (left continuous
sample paths with right limits). A stochastic process x is called RV-càdlàg (RV-
càglàd) if it is càdlàg (càglàd) and continuous at t = 0 and t = 1 (see e.g. [12]). A
stochastic F-adapted process x is an FV-process if it has paths of finite variation
on compacts.
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Let P(F) denote the smallest σ-algebra on [0, 1] × Ω generated by F-adapted
càglàd processes. It is generated by a class of all subsets of [0, 1] × Ω of the form
{0} × F0 and (s, t] × F , where F0 ∈ F0 and F ∈ Fs for 0 ≤ s < t ≤ 1. If a
stochastic process x is P(F)-measurable, it is called F-predictable.

We say that a càdlàg process x is an F-semimartingale if it can be expressed
as a sum x = N +A, where N is a local F-martingale and A is an FV-process.

Let 1 ≤ p ≤ ∞. We denote by | · | an Euclidean norm on IRn. Other norms
are denoted with respect to a space on which they are defined, e.g.: ‖ · ‖Lp(Ω) for
the norm in Lp(Ω).

By Lp(Ω) we denote the space Lp(Ω,F , P ; IRn).

Let Sp denote a space of all F-adapted càdlàg processes x with finite Sp

norm, where ‖x‖Sp = ‖ supt∈[0,1] |xt|‖Lp(Ω). For an F-semimartingale Z = N +A

we define jp(N,A) = ‖[N,N ]
1/2
1 +

∫ 1
0 |dAs|‖Lp(Ω), where [N,N ]t is a quadratic

variation process of a local F-martingale N and |dAs(ω)| denotes the total vari-
ation measure on [0, 1] induced by s 7→ As(ω). Let Hp denote a space of all
F-semimartingales Z with finite Hp norm, where ‖Z‖Hp = infZ=N+A jp(N,A),
and infimum is taken over all possible decompositions Z = N+A. Hp is a Banach
space (see e.g. [30]).

For a Banach space X, by cl(X) and cc(X) we denote the spaces of all
nonempty closed, compact and convex, respectively, subsets of X. By dist(a,A)
we denote the distance of a ∈ X to the set A ∈ cl(X). For A,B ∈ cl(X) let
h(A,B) = supa∈A dist(a,B) and H(A,B) = max{h(A,B), h(B,A)}.

For a set A the function 1IA denotes the indicator function i.e., 1IA(t) = 1 for
t ∈ A and 1IA(t) = 0 otherwise.

3. Properties of semimartingale measure

In this section we recall definition of a measure for an F-semimartingale Z ∈ H2,
some of its properties and an application to the set-valued analysis. We use them
in the next sections.

Let (Ω,F ,F, P ) be as before.

Let H2
n denote a space of n-dimensional F-semimartingales Z = (Z1, . . . , Zn),

Zi ∈ H2, i = 1, . . . , n, with a norm

‖Z‖H2
n
=

(

n
∑

i=1

‖Zi‖2H2

)1/2
.

For an F-measurable Z ∈ H2, Z0 = 0 we introduce a measure µZ called F-
semimartingale measure, (see e.g. [34]).
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Its definition is based on a Doléans-Dade measure µN for a local F-martingale
N , (see e.g. [9]), and a measure νA for the FV-process A. The measure νA on
P(F) we define as follows.

Let α(ω, dt) denote a kernel of a random measure defined on [0, 1] by

α(ω, dt) := cA(ω)|dAt(ω)|,

where cA(ω) =
∫ 1
0 |dAt(ω)| denotes the total variation of a random measure

|dAt(ω)| induced by the paths of the process A.

Let D be an F-predictable subset of [0, 1] × Ω. A measure νA is defined by

νA(D) =

∫

Ω

∫ 1

0
1ID(ω, t)α(ω, dt)P (dω).

For an F-measurable Z ∈ H2 we define a measure µZ = µN + νA.

Let Z ∈ H2 and f : [0, 1] × Ω → IRn. We define a space

L2
µZ

=

{

f ∈ P(F) :

∫

Ω×[0,1]
|f |2dµZ < ∞

}

.

L2
µZ

endowed with a norm

‖f‖L2
µZ

=

(
∫

Ω×[0,1]
|f |2dµZ

)
1

2

is a Banach space.

In the following Lemma we recall a property of the above measure, (SMP-
property, see [34]), which allows to get similar properties of set-valued stochastic
integrals driven by an F-semimartingale as those of set-valued stochastic integrals
driven by a square-integrable F-martingale, (see e.g. [21]).

Lemma 1 ([34]). Let Z ∈ H2 and f ∈ L2
µZ

. Then we have

(i)

∥

∥

∥

∥

∫

fτdZτ

∥

∥

∥

∥

2

H2
n

≤ 2‖f‖2L2
µZ

.

(ii)

∥

∥

∥

∥

∫ t

s
fτdZτ

∥

∥

∥

∥

2

L2(Ω)

≤ 2

∫

Ω×(s,t]
|f |2dµZ , for s, t ∈ [0, 1], s < t.

We recall now definition and some properties of the set SµZ
(G) and definitions of

set-valued stochastic integrals driven by an F-semimartingale Z, which are used
in the next sections.
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Definition 2 ([28]). For an F-measurable Z ∈ H2, Z0 = 0, and an F-predictable
set-valued process G, we define a set SµZ

(G) by

SµZ
(G) :=

{

f ∈ Sel(G) : f ∈ L2
µZ

}

,

where Sel(G) denotes the set of µZ-measurable selections.

An F-predictable set-valued process G is integrable with respect to an F-semi-
martingale measure µZ , if the set SµZ

(G) is nonempty.
G is µZ -squareintegrably bounded if there exists a process m ∈ L2

µZ
such

that H(G, {0}) ≤ m µZ-a.e.

Lemma 3 ([34]). For an F-measurable Z ∈ H2, Z0 = 0 and an F-predictable
µZ-squareintegrably bounded set-valued process G we get

(i) the set SµZ
(G) is a nonempty closed and bounded subset of L2

µZ
,

(ii) if G takes on convex values, SµZ
(G) is convex and weakly compact in L2

µZ
.

Definition 4 ([28]). Let Z be an F-semimartingale from H2, Z0 = 0. Let G be
an F-predictable µZ-squareintegrably bounded set-valued process. A set-valued
stochastic integral

∫

GτdZτ of G with respect to Z is defined by
∫

GτdZτ =

{
∫

gτdZτ : g ∈ SµZ
(G)}. For fixed 0 ≤ s < t ≤ 1 we also define

∫ t
s GτdZτ =

{
∫ t
s gτdZτ : g ∈ SµZ

(G)}.

4. Stratonovich-type stochastic integrals

In this section we define a set-valued Stratonovich-type stochastic integral. We
start with a single-valued case.

Our definition of Stratonovich-type stochastic integral is based on definition
introduced by F. Russo and P. Vallois in [32] and modified in [33] and [12]. For
RV-càdlàg processes g and Z they considered forward, backward and Stratonovich
integrals, respectively, as ucp-limits, (ucp means uniformly on compacts in prob-
ability, see e.g. [30]), of the following sums

I−τn(g, dZ)(a) =
∑

i

g(ti ∧ a)(Z(ti+1 ∧ a)− Z(ti ∧ a)),

I+τn(g, dZ)(a) =
∑

i

g(ti+1 ∧ a)(Z(ti+1 ∧ a)− Z(ti ∧ a)),

Ioτn(g, dZ)(a) = 1/2 (I+τn(g, dZ)(a) + I−τn(g, dZ)(a)),

when |τn| = supi(ti+1 − ti) of a subdivision {τn} of [0, 1], τn = {0 = t0 < t1 <
· · · < tn = 1}, tends to 0 for n → ∞.
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These integrals are denoted by
∫

(0,a] gd
−Z,

∫

(0,a] gd
+Z, and

∫

(0,a] g ◦ dZ. Some

basic properties of above defined integrals can be found in [12, 29, 33]. We recall
them in concise manner and give some new.

Definition 5 ([30]). For a stochastic càdlàg process g we set

g̃t = (gt)
∼ = g(1−t)−,

which is called a time-reversed process.

Proposition 6 ([12, 33]). For RV-càdlàg processes g, Z and 0 < a < b ≤ 1 we
have:

(i)
∫

(a,b] gd
±Z =

∫

(0,b] gd
±Z −

∫

(0,a] gd
±Z,

(ii)
∫

(a,b] g ◦ dZ = 1/2 · (
∫

(a,b] gd
+Z +

∫

(a,b] gd
−Z),

(iii)
∫

(0,a) gd
±Z = (

∫

(0,·] gd
±Z)a− = limt↑a

∫

(0,t] gd
±Z,

(iv)
∫

[a,b) gd
±Z =

∫

(0,b) gd
±Z −

∫

(0,a) gd
±Z,

(v)
∫

(0,a] g̃d
±Z̃ = −

∫

[1−a,1) gd
∓Z

(vi) Let Z be an F-semimartingale and let g be an F-adapted process. Then

∫

(0,·] gd
−Z =

∫

(0,·] gτ−dZτ ,

where the right-hand side integral denotes the semimartingale stochastic
integral (for its definition and properties see e.g.: [30]).

Lemma 7 ([29]). Let g be an F-adapted RV-càdlàg process and let Z be an F-
semimartingale, Z0 = 0. Let 0 < α < β < 1 be F-stopping times. Then the
forward integral satisfies

(i)
∫

(0,α] gd
−Z =

∫

(0,1] g 1I[0,α)d
−Z =

∫

(0,1] gτ− 1I[0,α](τ)dZτ ,

(ii)
∫

(α,β] gd
−Z =

∫

(0,1] g 1I[α,β)d
−Z =

∫

(0,1] gτ− 1I(α,β](τ)dZτ ,

(iii)
∫

(α,1] gd
−Z =

∫

(0,1] g 1I[α,1]d
−Z =

∫

(0,1] gτ− 1I(α,1](τ)dZτ .

Definition 8. Let (Ω,F , P ) be a probability space. Consider on Ω two filtrations
F = (Ft)0≤t≤1 and H = (Ht)0≤t≤1 satisfying usual hypothesis. A càdlàg process
x is (F,H)-reversible if x is an F-adapted process on [0, 1] and x̃ is an H-adapted
process on [0, 1], ([29]). A càdlàg process Z is an (F,H)-reversible semimartin-
gale, if Z is an F-semimartingale on [0, 1] and Z̃ is an H-semimartingale on [0, 1),
([30]).
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Lemma 9. Let g be an (F,H)-reversible RV-càdlàg process and let Z be an
(F,H)-reversible semimartingale, Z0 = 0. Then for all 0 < a < b < 1 we get

(i)
∫

(0,a] gd
+Z = −

∫

(0,1] g̃ · 1I[1−a,1)d
−Z̃ = −

∫

(0,1] g̃τ− · 1I[1−a,1)(τ)dZ̃τ ,

(ii)
∫

(a,b] gd
+Z = −

∫

(0,1] g̃τ− · 1I[1−b,1−a)(τ)dZ̃τ ,

(iii)
∫

[a,1) gd
+Z = −

∫

(0,1] g̃τ− · 1I[0,1−a](τ)dZ̃τ ,

where the right-hand side integral denotes the semimartingale stochastic integral
(for its definition and properties see e.g.: [30]).

Proof. (i) Using Proposition 6(v), (iv), (iii) and (vi) we get

J =

∫

(0,a]
gd+Z = −

∫

[1−a,1)
g̃d−Z̃ = −

(
∫

(0,1)
g̃d−Z̃ −

∫

(0,1−a)
g̃d−Z̃

)

= −

(

lim
s↑1

(
∫

(0,s]
g̃d−Z̃

)

− lim
ρ↑1−a

(
∫

(0,ρ]
g̃d−Z̃

))

= −

(

lim
s↑1

(
∫

(0,s]
g̃τ−dZ̃τ

)

− lim
ρ↑1−a

(
∫

(0,ρ]
g̃τ−dZ̃τ

))

.

By the property of the limit operator and definition of Itô-type stochastic integral
over (ρ, s] we get

J = − lim
s↑1

lim
ρ↑1−a

(
∫

(0,s]
g̃τ−dZ̃τ −

∫

(0,ρ]
g̃τ−dZ̃τ

))

= − lim
s↑1

lim
ρ↑1−a

(
∫

(ρ,s]
g̃τ−dZ̃τ

)

.

Using properties of the indicator function and Itô-type stochastic integral, and
Dominated Convergence Theorem we get

J = − lim
s↑1

lim
ρ↑1−a

(
∫

(0,1]
g̃τ− · 1I(ρ,s](τ)dZ̃τ

)

= −

∫

(0,1]
g̃τ− · 1I[1−a,1)(τ)dZ̃τ .

(ii) By Proposition 6(i) and above proved equality (i) we get

J =

∫

(a,b]
gd+Z =

∫

(0,b]
gd+Z −

∫

(0,a]
gd+Z

= −

∫

(0,1]
g̃τ− · 1I[1−b,1)(τ)dZ̃τ +

∫

(0,1]
g̃τ− · 1I[1−a,1)(τ)dZ̃τ .
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Using definition of Itô-type stochastic integral over [a, b), (see e.g. [30]), and
Dominated Convergence Theorem we get

J = −

∫

(0,1]
g̃τ− · 1I[1−b,1−a)(τ)dZ̃τ .

(iii) By Proposition 6(v) and Lemma 7(i) we get
∫

[a,1)
gd+Z = −

∫

(0,1−a]
g̃dZ̃ = −

∫

(0,1]
g̃τ− · 1I[0,1−a](τ)dZ̃τ .

Now we define a set-valued Stratonovich-type stochastic integral.
We recall now some basic definitions. Let (Ω,F ,F, P ) be as before.

A set-valued function G : Ω → cc(IRn) is F-measurable if for every closed subset
C ∈ IRn one has: {ω ∈ Ω : G(ω) ∩ C 6= ∅} ∈ F .

By a set-valued stochastic process G with values in cc(IRn) we consider a
family of F-measurable set-valued mappings Gt : Ω → cc(IRn), each t ∈ [0, 1].
A stochastic set-valued process G : [0, 1]× Ω → cc(IRn) is F-adapted if for every
t ∈ [0, 1] a map Gt : Ω → cc(IRn) is Ft-measurable.

For every fixed ω ∈ Ω as a sample path of the set-valued process G we mean
a set-valued function Gω : [0, 1] → cc(IRn) such that Gω(t) = G(t, ω).

A set-valued process G = (Gt)t∈[0,1] is F-predictable if it is P(F)-measu-
rable and the family of all such processes is also denoted by P(F). One has
P(F) ⊂ β ⊗F , where β denotes the Borel σ-algebra on [0, 1], (see e.g. [29, 34]).

Definition 10 ([29]). A stochastic set-valued process G is càdlàg if it has right
continuous sample paths with left limits with respect to the Hausdorff metric.
Similarly we define a set-valued càglàd process. A stochastic set-valued process
G is RV-càdlàg (RV-càglàd) if it is càdlàg (càglàd) and continuous for t = 0 and
t = 1.

Definition 11 ([29]). For a stochastic set-valued càdlàg process G we set

G̃t = (Gt)
∼ = G(1−t)−,

which is called a time-reversed process. The limit of the set-valued map is taken
with respect to the Hausdorff metric.

Let (Ω,F , [F,H], P ) be as before.

Definition 12 ([29]). A set-valued càdlàg process G is (F,H)-reversible if G is
an F-adapted process on [0, 1] and G̃ is an H-adapted process on [0, 1].

Lemma 13 ([29]). Let G be a set-valued (F,H)-reversible process. Then there
exists a selection g of G being an (F,H)-reversible process.
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Remark 14 ([29]). Lemma 13 is also true if we additionally assume that paths
of G are left continuous at t = 1, (then the obtained selection g is RV-càdlàg).

Definition 15 ([29]). Let G be a set-valued (F,H)-reversible RV-càdlàg process
and let Z be an (F,H)-reversible semimartingale, Z0 = 0. Let S(G) denote the
family of all (F,H)-reversible RV-càdlàg selections of G. For every 0 ≤ a < b ≤ 1
we define

∫

(a,b]
G ◦ dZ =

{

1/2

(
∫

(a,b]
gd−Z +

∫

(a,b]
gd+Z

)

: g ∈ S(G)

}

(1)

=

{

1/2

(
∫

(a,b]
gτ−dZτ −

∫

[1−b,1−a)
g̃τ−dZ̃τ

)

: g ∈ S(G)

}

.(2)

Remark 16 ([29]). It follows by Lemma 13 that the set S(G) is nonempty and
therefore, the set-valued integral defined above exists.

Remark 17. Note that the family S(G) of all (F,H)-reversible RV-càdlàg se-
lections of G is, in some sense, a set of the form: S(G) = S−(G) ∪ S+(G̃), where
S−(G) is a set of F-adapted RV-càdlàg selections of G and S+(G̃) is a set of
H-adapted RV-càdlàg selections of G̃.

Definition 18. A stochastic process x is (F,H)-adapted if there exist stochastic
processes u, v such that u is an F-adapted process on [0, 1], v is an H-adapted
process on [0, 1] and x = u+ v.

Definition 19 ([29]). A set-valued process G is integrably bounded if there
exists an (F,H)-reversible RV-càdlàg process m, ‖m‖S∞ < ∞ and such that
H(Gt, {0}) ≤ mt, each t ∈ [0, 1].

Remark 20. Note that integrably boundedness of a process G means that G is
µZ -squareintegrably bounded and G̃ is µZ̃-squareintegrably bounded.

5. Stratonovich-type stochastic differential inclusion

In this section we prove non-emptiness and closedness of the solution set of
Stratonovich-type stochastic differential inclusion of the form (SSI), (in Defi-
nition 23).

Let (Ω,F , [F,H], P ) be as before.
Let F : [0, 1] × IRn → cc(IRn) be a (β ⊗F)-measurable multifunction.
Let S2([0, 1]) denote the space of IRn-valued (F,H)-adapted cádlág processes

with a norm ‖x‖S2 = ‖ supt∈[0,1] |xt|‖L2(Ω).

For any x ∈ S2([0, 1]) and a multifunction F , by (F ◦ x)−, where xt− =
lims↑t xs, we denote a set-valued process (F (t, xt−(ω)))t∈[0,1].
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Let x ∈ S2([0, 1]), Z ∈ H∞ and F (t, ·) be continuous for any t ∈ [0, 1]. If a process
F ◦ x is integrably bounded, then the sets SµZ

((F ◦ x)−) and Sµ
Z̃
((F ◦ x̃)−) are

nonempty in L2
µZ

and L2
µ
Z̃
, respectively. It follows by Lemma 3 and Remark 20.

By Definition 15 we have two equivalent possibilities to define the Stratonovich-
type stochastic integral: (1) and (2). In the following we use (2), but we expand
the choice of selections.

Definition 21. Let G be a set-valued (F,H)-reversible RV-càdlàg process and
let Z be an (F,H)-reversible semimartingale, Z0 = 0. For every 0 ≤ a < b ≤ 1
we define

∫

(a,b]
G ◦ dZ =

{

1/2

(
∫

(a,b]
gτdZτ −

∫

[1−b,1−a)
h̃τdZ̃τ

)

:

g ∈ SµZ
(G−) and h̃ ∈ Sµ

Z̃
(G̃−)

}

.

For convenience we introduce the following notation

∫

(a,b]
(g, h̃) ◦ dZ := 1/2

(
∫

(a,b]
gτ−dZτ −

∫

[1−b,1−a)
h̃τ−dZ̃τ

)

.

Remark 22. Let us note that for g ∈ S(G), (in Definition 15), we get that
g− ∈ SµZ

(G−) and g̃− ∈ Sµ
Z̃
(G̃−), (in Definition 21). Thus, the set-valued

Stratonovich-type stochastic integral defined by Definition 15 is, in some sense,
a subset of this defined by Definition 21.

Definition 23. Let Z be an (F,H)-reversible semimartingale from H∞, Z0 = 0,
F : [0, 1] × IRn → cc(IRn) and s, t ∈ [0, 1], s < t. We consider the Stratonovich-
type stochastic inclusion

(SSI) xt − xs ∈ clL2(Ω)

(
∫

(s,t]
F (τ, xτ ) ◦ dZ

)

with x0 = ξ ∈ L2(Ω, [F0,H1], P ; IRn), i.e., ξ ∈ L2(Ω,F0, P ; IRn) and ξ̃ ∈
L2(Ω,H1, P ; IRn). A process x ∈ S2([0, 1]) is a solution of the stochastic in-
clusion (SSI), if x0 = ξ and for any s, t ∈ [0, 1], s < t a random variable xt − xs
belongs to the set

clL2(Ω)

(
∫

(s,t]
F (τ, xτ ) ◦ dZ

)

.

A set of all solutions of the stochastic inclusion (SSI) is denoted by

T (ξ, Z, F ) = {x ∈ S2([0, 1]) : x is a solution of (SSI)}.
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We say that F : [0, 1]× IRn → cc(IRn) is a Lipschitz multifunction if there exists
a constant D such that for all t ∈ [0, 1] and x, y ∈ IRn

H(F (t, x), F (t, y)) ≤ D|x− y|.

Assumption 1
Let F : [0, T ] × IRn → cc(IRn) be a multifunction satisfying

(i) F : [0, 1] × IRn → cc(IRn) is (β ⊗F)-measurable,

(ii) F : [0, 1] × IRn → cc(IRn) is a Lipschitz multifunction,

(iii) for any x ∈ S2([0, 1]) a set-valued process F ◦ x is integrably bounded.

Now we prove non-emptiness and closedness of the set of solutions T (ξ, Z, F ).

Theorem 24. Let Z be an (F,H)-reversible semimartingale from H∞, Z0 = 0.
Let F : [0, 1] × IRn → cc(IRn) be a multifunction satisfying Assumption 1. Then
for any ξ ∈ L2(Ω, [F0,H1], P ; IRn) the set T (ξ, Z, F ) is nonempty.

Proof. In the proof we use Covitz-Nadler Theorem, (see e.g.: [19] Th.II.4.4).
Let N1 +A1 be a decomposition of the semimartingale Z, i.e., Z = N1 +A1 and
Ñ2 + Ã2 be a decomposition of the semimartingale Z̃, i.e., Z̃ = Ñ2 + Ã2. Let
us divide the interval [0, 1] by 0 = t0 < t1 < · · · < tk−1 < tk = 1. Let ciZ =
(
∫

(ti−1,ti]
d[N1, N1]τ )

1/2 +
∫

(ti−1,ti]
|dA1

τ | and ci
Z̃
= (

∫

[1−ti,1−ti−1)
d[Ñ2, Ñ2]τ )

1/2 +
∫

[1−ti,1−ti−1)
|dÃ2

τ |, for i = 1, . . . , k. We choose the points ti such that

max
ti

{Dc2‖c
i
Z‖L∞(Ω),Dc2‖c

i
Z̃
‖L∞(Ω)} < 1,

where a constant c2 comes from [30] Th.V.2.2.
First, we construct a solution of the stochastic inclusion (SSI) on [0, t1]. For

any ξ ∈ L2(Ω, [F0,H1], P ; IRn) and x ∈ S2([0, t1]) we define a map Γ by

Γ(x) =

{

y ∈ S2([0, t1]) : yt = ξ + 1/2

(
∫

(0,t]
f1
τ dZτ −

∫

[1−t,1)
f̃2
τ dZ̃τ

)

,

where f1 ∈ SµZ
(F ◦ x)− and f̃2 ∈ Sµ

Z̃
((F ◦ x)∼−), for (t, ω) ∈ (0, t1]× Ω

}

.

Let x be an arbitrary element of S2((0, t1]).
Thanks to Assumption 1(iii), Remark 20 and Lemma 3 it follows that Γ(x)

is nonempty.
Γ(x) is not necessarily a closed set in S2((0, t1]) (in a sense of ‖ · ‖S2-norm).
Let us consider a set clS2(Γ(x)). It is a closure of the set Γ(x) in S2((0, t1]).

This set is a nonempty, bounded and closed subset of S2((0, t1]).
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We show that a map x → clS2(Γ(x)) is a set-valued contraction in S2((0, t1]).

Let u and v be arbitrary elements of S2((0, t1]). We show that there exists a
constant K ∈ [0, 1) such that

HS2(clS2(Γ(u)), clS2(Γ(v))) ≤ K‖u− v‖S2 .

Let y be an arbitrary element of clS2(Γ(u)). For any ǫ > 0 there exists a stochastic
process y1 ∈ Γ(u) such that ‖y − y1‖S2 < ǫ. It can be represented as y1t =
ξ + 1/2(

∫

(0,t] f
1
τ dZτ −

∫

[1−t,1) f̃
2
τ dZ̃τ ) for some f1 ∈ SµZ

((F ◦ u)−) and f̃2 ∈

Sµ
Z̃
((F ◦ u)∼−) on (0, t1] × Ω and on [1 − t1, 1) × Ω, respectively. It follows by

the definition of the set Γ(u). From Filippov Theorem (see e.g.: [19] Th.II.3.12)
there exist g1 ∈ SµZ

((F ◦ v)−) such that

|f1(t, ω)− g1(t, ω)| ≤ dist(f1(t, ω), F (t, v(t−, ω))) + ǫ,(3)

for any t ∈ (0, t1] and a.a. ω ∈ Ω. Similarly, there exists g̃2 ∈ Sµ
Z̃
((F ◦ v)∼−) such

that

|f̃2(t, ω)− g̃2(t, ω)| ≤ dist(f̃2(t, ω), (F (t, v(·, ω)))∼t−) + ǫ,(4)

for any t ∈ [1− t1, 1) and a.a. ω ∈ Ω.

Let y2t = ξ+1/2(
∫

(0,t] g
1
τdZτ−

∫

[1−t,1) g̃
2
τdZ̃τ ) for t ∈ [0, t1]. From the definition

of the set Γ(v) we get y2 ∈ Γ(v). Let us estimate the distance between y and y2

in S2([0, t1]). We get

J = ‖y − y2‖S2 ≤ ‖y − y1‖S2 + ‖y1 − y2‖S2

≤ ǫ+ 1/2‖

∫

(f1
τ − g1τ )dZτ‖S2 + 1/2‖

∫

(f̃2
τ − g̃2τ )dZ̃τ‖S2 .

For arbitrary f1 ∈ (F ◦ u)− and f̃2 ∈ ((F ◦ u)−)
∼ we have

dist(f1(t, ω), F (t, v(t−, ω))) ≤ H(F (t, ut−), F (t, vt−)),

for any t ∈ (0, t1] and a.a. ω ∈ Ω, and

dist(f̃2(t, ω), (F (t, v(t−, ω)))∼) ≤ H((F (t, ut−)
∼), (F (t, vt−))

∼),

for any t ∈ [1− t1, 1) and a.a. ω ∈ Ω.

So by (3) and (4) we get

J ≤ ǫ+ 1/2c2‖c
1
Z‖L∞(Ω)‖ sup

t∈(0,t1]
(H(F (t, ut−), F (t, vt−)) + ǫ)‖L2(Ω)

+ 1/2c2‖c
1
Z̃
‖L∞(Ω)‖ sup

t∈[1−t1,1)
(H((F (t, ut−))

∼, (F (t, vt−))
∼) + ǫ)‖L2(Ω).



Stratonovich integrals and inclusions 19

By Lipschitz condition for the multifunction F we get

J ≤ ǫ+ 1/2c2‖c
1
Z‖L∞(Ω)‖ sup

t∈(0,t1 ]
(D|ut − vt|+ ǫ)‖L2(Ω)

+ 1/2c2‖c
1
Z̃
‖L∞(Ω)‖ sup

t∈[1−t1,1)
(D|ut − vt|+ ǫ)‖L2(Ω)

≤ 1/2Dc2(‖c
1
Z‖L∞(Ω)‖ sup

t∈(0,t1 ]
|ut − vt|‖L2(Ω)

+ ‖c1
Z̃
‖L∞(Ω)‖ sup

t∈[1−t1,1)
|ut − vt|‖L2(Ω)) + ǫ1

≤ Dc2 max{‖c1Z‖L∞(Ω), ‖c
1
Z̃
‖L∞(Ω)}‖u− v‖S2 + ǫ1,

where ǫ1 = (1/2c2(‖c
1
Z‖L∞(Ω) + ‖c1

Z̃
‖L∞(Ω)) + 1)ǫ. Thus there exists a constant

K = Dc2max{‖c1Z‖L∞(Ω), ‖c
1
Z̃
‖L∞(Ω)} which does not depend on the choice of

the element y from the set clS2(Γ(u)). Therefore,

‖yt − y2t ‖S2 ≤ K‖u− v‖S2 + ǫ1.

Since ǫ > 0 was arbitrarily chosen, the distance from an element y ∈ clS2(Γ(u))
to the set clS2(Γ(v)) can be estimated by

distS2(y, clS2(Γ(v))) ≤ K‖u− v‖S2 .

Thus

HS2(clS2(Γ(u)), clS2(Γ(v))) ≤ K‖u− v‖S2 .

The constant K = Dc2max{‖c1Z‖L∞(Ω), ‖c
1
Z̃
‖L∞(Ω)} is a nonnegative number less

than 1, and therefore, the map clS2(Γ(·)) is a set-valued contraction in S2((0, t1]).

From Covitz-Nadler Theorem we conclude there exists a process y ∈ S2((0, t1])
such that y ∈ clS2(Γ(x)). For any ǫ > 0 we can choose yǫ ∈ Γ(x) satisfying

‖y − yǫ‖S2 < ǫ.

By the definition of the set Γ(x) there exist g1,ǫ ∈ SµZ
((F ◦ x)−) and g̃2,ǫ ∈

Sµ
Z̃
((F ◦ x)∼−) such that yǫt = ξ + 1/2

∫

(0,t] g
1,ǫ
τ dZτ − 1/2

∫

[1−t,1) g̃
2,ǫ
τ dZ̃τ for any

t ∈ (0, t1]. Therefore,

∥

∥

∥

∥

sup
t∈(0,t1]

∣

∣

∣
yt −

(

ξ + 1/2

∫

(0,t]
g1,ǫτ dZτ − 1/2

∫

[1−t,1)
g̃2,ǫτ dZ̃τ

)
∣

∣

∣

∥

∥

∥

∥

L2(Ω)

< ǫ.
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Thus for any t ∈ (0, t1]
∥

∥

∥

∥

yt −
(

ξ + 1/2

∫

(0,t]
g1,ǫτ dZτ − 1/2

∫

[1−t,1)
g̃2,ǫτ dZ̃τ

)

∥

∥

∥

∥

L2(Ω)

< ǫ.(5)

Now we show that the above process y is a solution of the stochastic inclusion
(SSI) on (0, t1]. We do this by checking that yt − ys ∈ clL2(Ω)(

∫

(s,t] F (τ, xτ ) ◦ dZ)

for any s, t ∈ (0, t1], s < t.
By Definition 21 and (5) we get that for every s, t ∈ (0, t1], s < t

∥

∥

∥

∥

yt − ys − 1/2

∫

(s,t]
g1,ǫτ dZτ + 1/2

∫

[1−t,1−s)
g̃2,ǫτ dZ̃τ

∥

∥

∥

∥

L2(Ω)

< ǫ.

Since ǫ > 0 was arbitrarily chosen, we obtain

yt − ys ∈ clL2(Ω)

(
∫

(s,t]
F (τ, xτ ) ◦ dZ

)

, for any s, t ∈ (0, t1], s < t.

Let i = 2. The proof is similar to the i = 1 case. We should only change the
interval (0, t1] into (t1, t2] and take the starting point of the constructed solution
equal to yt1 . In a similar way we obtain a process y ∈ S2((t1, t2]) and for an
arbitrary ǫ > 0 processes g1,ǫ ∈ SµZ

((F ◦ y)−) and g̃2,ǫ ∈ Sµ
Z̃
((F ◦ y)∼−) such that

∥

∥

∥

∥

yt −
(

yt1 + 1/2

∫

(t1,t]
g1,ǫτ dZτ − 1/2

∫

[1−t,1−t1)
g̃2,ǫτ dZ̃τ

)

∥

∥

∥

∥

L2(Ω)

< ǫ,

for any t ∈ (t1, t2].
The above inequality means that for every s, t ∈ (t1, t2], s < t, the stochastic

process y is an element of the closure in a sense of an L2(Ω)-norm of the set
∫

(s,t]
F (τ, xτ ) ◦ dZ,

Therefore, y is a solution of the inclusion (SSI) on the interval (t1, t2].
When we repeat the above construction for i = 2, 3, . . . , k−1, taking starting

points of the constructed solutions equal to yti , we get solutions of the inclusion
(SSI) on the intervals (ti, ti+1].

The solution of the inclusion (SSI) for s, t ∈ [0, 1], s < t is a composition of
the solutions constructed on the intervals (0, t1] and (ti, ti+1], i = 1, . . . , k− 1.

Assumption 2
Let Z be an (F,H)-reversible semimartingale from H∞, Z0 = 0 such that

(i) Z = N1 +A1, where N1 – local F-martingale and A1 – deterministic FV-
process,
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(ii) Z̃ = Ñ2 + Ã2, where Ñ2 – local H-martingale and Ã2 – deterministic FV-
process,

Theorem 25. Let Z be an (F,H)-reversible semimartingale from H∞, Z0 = 0
and satisfies Assumption 2. Let F : [0, 1] × IRn → cc(IRn) be a multifunction
satisfying Assumption 1. Then for any ξ ∈ L2(Ω,F0, P ; IRn) the set T (ξ, Z, F )
is closed in S2([0, 1]).

Proof. Let {xk}k≥1 be a sequence of elements of the set of all solutions of the
stochastic inclusion (SSI), which converges to the limit x in S2([0, 1]).

We have to show that the limit x belongs to the set T (ξ, Z, F ), i.e., for any
s, t ∈ [0, 1], s < t

distL2(Ω)

(

xt − xs,

∫

(s,t]
F (τ, xτ ) ◦ dZ

)

= 0.

Observe that

I = distL2(Ω)

(

xt − xs,

∫

(s,t]
F (τ, xτ ) ◦ dZ

)

≤ ‖xt − xs − (xkt − xks)‖L2(Ω)

+ HL2(Ω)

(
∫

(s,t]
F (τ, xkτ ) ◦ dZ,

∫

(s,t]
F (τ, xτ ) ◦ dZ

)

= I1 + I2,

and

I1 = ‖xt − xs − (xkt − xks)‖L2(Ω) ≤ 2‖x− xk‖S2 → 0,

while k → ∞.
In order to analyze I2, let g1 ∈ SµZ

(F ◦ xk)− and g̃2 ∈ Sµ
Z̃
((F ◦ xk)∼−) be

arbitrary elements. We have

inf
f1∈SµZ

(F◦x)−
inf

f̃2∈Sµ
Z̃
((F◦x)∼

−
)

∥

∥

∥

∥

∫

(s,t]
(g1, g̃2) ◦ dZ −

∫

(s,t]
(f1, f̃2) ◦ dZ

∥

∥

∥

∥

2

L2(Ω)

= 1/4 inf
f1∈SµZ

(F◦x)−
inf

f̃2∈Sµ
Z̃
((F◦x)∼

−
)

∥

∥

∥

∥

∫

(s,t]
g1τdZτ −

∫

[1−t,1−s)
g̃2τdZ̃τ

−

∫

(s,t]
f1
τ dZτ +

∫

[1−t,1−s)
f̃2
τ dZ̃τ

∥

∥

∥

∥

2

L2(Ω)

≤ 1/2

(

inf
f1∈SµZ

(F◦x)−

∥

∥

∥

∥

∫

(s,t]
(g1τ − f1

τ )dZτ

∥

∥

∥

∥

2

L2(Ω)

+ inf
f̃2∈Sµ

Z̃
((F◦x)∼

−
)

∥

∥

∥

∥

∫

[1−t,1−s)
(g̃2τ − f̃2

τ )dZ̃τ

∥

∥

∥

∥

2

L2(Ω)

)

= 1/2(J1 + J2).



22 J. Syga

Using Lemma 1 and [15] Theorem 2.2 for J1, we get

J1 ≤ 2

∫

(s,t]×Ω
inf

y1∈F (τ,xτ−)
|g1τ − y1|2dµZ = 2

∫

(s,t]×Ω
dist2(g1τ , F (τ, xτ−))dµZ .

Considering the component J2 we get

J2 = inf
f̃2∈Sµ

Z̃
((F◦x)∼

−
)

∥

∥

∥

∥

∫

[1−t,1−s)
(g̃2τ − f̃2

τ )dZ̃τ

∥

∥

∥

∥

2

L2(Ω)

= lim
α↑1−t

lim
β↑1−s

inf
f̃2∈Sµ

Z̃
((F◦x)∼

−
)

∥

∥

∥

∥

∫

(α,β]
(g̃2τ − f̃2

τ )dZ̃τ

∥

∥

∥

∥

2

L2(Ω)

≤ 2 lim
α↑1−t

lim
β↑1−s

∫

(α,β]×Ω
dist2(g̃2τ , F̃ (τ, xτ−))dµZ̃ .

Using Lebesgue Dominated Convergence Theorem we obtain

J2 ≤ 2

∫

[1−t,1−s)×Ω
dist2(g̃2τ , F̃ (τ, xτ−))dµZ̃ ,

and finally

1/2(J1 + J2)

≤

∫

(s,t]×Ω
dist2(g1τ , F (τ, xτ−))dµZ +

∫

[1−t,1−s)×Ω
dist2(g̃2τ , F̃ (τ, xτ−))dµZ̃ .

Observe that we get similar result for

infg1∈SµZ
(F◦xk)− inf g̃2∈Sµ

Z̃
((F◦xk)∼

−
) ‖

∫

(s,t](g
1, g̃2) ◦ dZ −

∫

(s,t](f
1, f̃2) ◦ dZ‖2L2(Ω),

when f1 ∈ SµZ
(F ◦x)− and f̃2 ∈ Sµ

Z̃
((F ◦x)∼−) be arbitrary elements. Moreover,

sup
g1∈SµZ

(F◦xk)−

sup
g̃2∈Sµ

Z̃
((F◦xk)∼

−
)

inf
f1∈SµZ

(F◦x)−
inf

f̃2∈Sµ
Z̃
((F◦x)∼

−
)

∥

∥

∥

∥

∫

(s,t]
(g1, g̃2) ◦ dZ −

∫

(s,t]
(f1, f̃2) ◦ dZ

∥

∥

∥

∥

2

L2(Ω)

≤

∫

(s,t]×Ω
h
2
(F (τ, xkτ−), F (τ, xτ−))dµZ +

∫

[1−t,1−s)×Ω
h
2
(F̃ (τ, xkτ−), F̃ (τ, xτ−))dµZ̃

and similar for

supf1∈SµZ
(F◦x)− supf̃2∈Sµ

Z̃
((F◦x)∼

−
) infg1∈SµZ

(F◦xk)− inf g̃2∈Sµ
Z̃
((F◦xk)∼

−
)

‖
∫

(s,t](g
1, g̃2) ◦ dZ −

∫

(s,t](f
1, f̃2) ◦ dZ‖2L2(Ω).
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Finally, we get

(I2)
2 ≤

∫

(s,t]×Ω
H2(F (τ, xkτ−), F (τ, xτ−))dµZ

+

∫

[1−t,1−s)×Ω
H2(F̃ (τ, xkτ−), F̃ (τ, xτ−))dµZ̃ .

Using Lipschitz condition for the set-valued process F , we get

(I2)
2 ≤ D2

∫

(s,t]×Ω
|xkτ− − xτ−|

2dµZ +

∫

[1−t,1−s)×Ω
|xkτ− − xτ−|

2dµZ̃

= D2 ·

(

E

∫

(s,t]
|xkτ− − xτ−|

2d[N1, N1]τ +E

(

cA1 ·

∫

(s,t]
|xkτ− − xτ−|

2|dA1
τ |

)

+ E

∫

[1−t,1−s)
|xkτ− − xτ−|

2d[Ñ2, Ñ2]τ +E

(

cÃ2 ·

∫

[1−t,1−s)
|xkτ− − xτ−|

2|dÃ2
τ |

))

,

where: cA1 and cÃ2 are defined in Section 3. Since A1 and Ã2 are deterministic
FV-processes, we get

(I2)
2 ≤ D2 ·max {1, cA1 , cÃ2}

·

(

E

∫

(s,t]
|xkτ− − xτ−|

2d[N1, N1]τ + E

(
∫

(s,t]
|xkτ− − xτ−|

2|dA1
τ |

)

+ E

∫

[1−t,1−s)
|xkτ− − xτ−|

2d[Ñ2, Ñ2]τ + E

(
∫

[1−t,1−s)
|xkτ− − xτ−|

2|dÃ2
τ |

))

.

Using Emery’s inequality, we get

(I2)
2 ≤ D2 ·max{1, cA1 , cÃ2} · ‖|x

k − x|2‖S1

· (‖[N1, N1]‖H∞ + ‖|dA1|‖H∞ + ‖[Ñ2, Ñ2]‖H∞ + ‖|dÃ2|‖H∞)

= D2 ·max{1, cA1 , cÃ2} · ‖x
k − x‖S2

· (‖[N1, N1]‖H∞ + ‖|dA1|‖H∞ + ‖[Ñ2, Ñ2]‖H∞ + ‖|dÃ2|‖H∞)

which tends to 0 while k → ∞, so we have the result.

Remark 26. The above theorem can be applied only to stochastic inclusions
driven by a semimartingale with a deterministic FV-part. From a mathematical
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point of view this is a serious problem. However, real problems are often described
by stochastic equations or inclusions of this type, see e.g. [1, 11].

As an example we recall a financial model presented in [28, 34]. Suppose we
have a model of a free-arbitrage market defined on a filtered probability space.
The capital of an investor (a writer of a contingent claim) is defined under a
self-financing assumption by a relation

ξt(ω, u) = ξ0(ω, u) +

∫ t

0
θτ (ω, u)dBτ (ω, u) +

∫ t

0
γτ (ω, u)dSτ (ω, u), t ∈ [0, T ],

where (θ, γ) is an investor’s strategy (hedge) process, while B and S are price
processes of a bond (an asset with a predictable price) and stock, respectively
(see e.g.: [11] for details), u denotes a control parameter taken from a given set
U of attainable controls.

If the model is based on daily returns of a stock, statistical tests reject hy-
potheses about normality distribution made in the model of the Black and Scholes
type, (one of the most commonly used Gaussian model in financial mathematics).
It follows that real prices are usually better characterized by the so-called heavy
tailed distributions, skewness property, effects of clusters and so on. Moreover,
an empirical study of the German stock price data shows that paths should be
modeled by a discontinuous process instead of a continuous one.

Generalizations of the Gaussian model were proposed in many different man-
ners. It was allowed in [1], that the price process has jumps and the resulting
equation has the form (in a one dimensional case)

ξt(ω, u) = µtξt−(ω, u)dt + σtξt−(ω, u)dWt(ω, u) + βξt−(ω, u)dNt(ω, u),

where N is a point process counting the number of jumps of size β which the
relative price ξt(ω, u)/ξt−(ω, u) had before time t and W is a standard Wiener
process.

Since (Nt)t≥0 can be treated as a Poisson process with some intensity λ (see
e.g.: [30]), then the above problem can be again rewritten equivalently as

ξt = ξ0 +

∫ t

0
fτdZτ ; t ∈ [0, T ],

or

ξt ∈ ξ0 +

∫ t

0
FτdZτ ; t ∈ [0, T ],(6)

with fτ (ω, u) = (µτξτ−, στξτ−, β, β), Zτ = (0,Wτ , Nτ − λτ, 0) + (τ, 0, 0, λτ) =
Mτ +Aτ and

F (τ, ω) =
⋃

u∈U

f(τ, ω, u).
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The set-valued integral
∫

FτdZτ driven by a semimartingale appears, instead of
a single-valued

∫

fτdZτ , in a natural way, if we consider the control of financial
problems connected with the models as those presented above. We obtain the
stochastic inclusion (6), which describes the discussed financial problem. We can
analyze it with respect to the whole set U of attainable controls.

In above example we obtain an Itô-type stochastic differential inclusion driven
by a semimartingale with a deterministic FV-part. In our paper we give a tool
to describe in a compact form some advanced models (financial, economical,
technical) using Stratonovich-type stochastic integrals and inclusions.
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