ArticleOriginal scientific text

Title

Semimartingale measure in the investigation of Stratonovich-type stochastic integrals and inclusions

Authors 1

Affiliations

  1. Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, ul. prof. Z. Szafrana 4a, 65-516 Zielona Góra, Poland

Abstract

A random measure associated to a semimartingale is introduced. We use it to investigate properties of several types of stochastic integrals and properties of the solution set of Stratonovich-type stochastic inclusion.

Keywords

forward, backward and symmetric integral, time-reversible process, semimartingale measure, set-valued stochastic integral, Stratonovich inclusion

Bibliography

  1. K.K. Aase and P.Guttrup, Estimation in models for security prices, Scand. Actuarial J. 3/4 (1987), 211-225.
  2. N.U. Ahmed, Nonlinear stochastic differential inclusions on Banach spaces, Stoch. Anal. Appl. 12 (1994), 1-10.
  3. N.U. Ahmed, Impulsive perturbation of C₀ semigroups and stochastic evolution inclusions, Discuss. Math. DICO 22 (1) (2002), 125-149.
  4. N.U. Ahmed, A brief summary of optimal control of uncertain systems governed by parabolic inclusions, Arab. J. Sci. Eng. ASJE Math. 4 (1D) (2009), 13-23.
  5. J.P. Aubin and A. Cellina, Differential Inclusions (Springer-Verlag, Berlin, Heidelberg, New York, 1984).
  6. J.P. Aubin and H. Frankowska, Set-Valued Analysis (Birkhäuser, Boston - Basel - Berlin, 1990).
  7. J.P. Aubin and G. Da Prato, The viability theorem for stochastic differential inclusions, Stoch. Anal. Appl. 16 (1998), 1-15.
  8. E.P. Avgerinos and N.S. Papageorgiou, Random nonlinear evolution inclusions in reflexive Banach spaces, Proc. Amer. Math. Soc. 104 (1988), 293-299.
  9. K.L. Chung and R.J. Williams, Introduction to stochastic integration (Birkhäuser, Boston - Basel - Berlin, 1990).
  10. G. Da Prato and H. Frankowska, A stochastic Filippov theorem, Stoch. Anal. Appl. 12 (4) (1994), 409-426.
  11. D. Duffie, Dynamic Asset Pricing Theory (Princeton Univ. Press Princeton, New Jersey, 1996).
  12. M. Errami, F. Russo and P. Vallois, Itôs formula for C1,λ-functions of a càdlàg process and related calculus, Probab. Theory Relat. Fields 122 (2002), 191-221.
  13. A. Fryszkowski, Continuous selections of Aumann integrals, J. Math. Anal. Appl. 145 (2) (1990), 431-446.
  14. Góralczyk and J. Motyl, Stratonovich stochastic inclusion, Dynam. Systems Appl. 18 (2) (2009), 191-204.
  15. F. Hiai and H. Umegaki, Integrals, conditional expectations, J. Multivar. Anal. 7 (1977), 149-182.
  16. M. Kisielewicz, Properties of solution set of stochastic inclusions, J. Appl. Math. Stoch. Anal. 6 (3) (1993), 217-236.
  17. M. Kisielewicz, Existence theorem for nonconvex stochastic inclusions, J. Appl. Math. Stoch. Anal. 2 (1994), 151-159.
  18. M. Kisielewicz, Set-valued stochastic integrals and stochastic inclusions, Stoch. Anal. Appl. 15 (5) (1997), 783-800.
  19. M. Kisielewicz, Differential Inclusions and Optimal Control (Kluwer Acad. Publ. and Polish Sci. Publ. (Warszawa - Dordrecht - Boston - London, 1991).
  20. M. Kisielewicz, M. Michta and J. Motyl, Set valued approach to stochastic control. Part I (Existence and Regularity Properties), Dynam. Systems Appl. 12 (2003), 405-432.
  21. M. Kisielewicz, M. Michta and J. Motyl, Set valued approach to stochastic control. Part II (Viability and Semimartingale Issues), Dynam. Systems Appl. 12 (2003), 433-466.
  22. M. Michta, On set-valued stochastic integrals and fuzzy stochastic equations, Fuzzy Sets and Systems 177 (2011), 1-19.
  23. M. Michta and J. Motyl, Differentiable selections of multifunctions and their applications, Nonlinear Anal. 66 (2) (2007), 536-545.
  24. M. Michta and J. Motyl, Martingale problem to Stratonovich stochastic inclusion, Nonlinear Anal. 71 (12) (2009), e1307-e1311.
  25. J. Motyl, On the solution of a stochastic differential inclusion, J. Math. Anal. Appl. 192 (1) (1995), 117-132.
  26. J. Motyl, Note on strong solutions of a stochastic inclusion, J. Appl. Math. Stoch. Anal. 8 (3) (1995), 291-297.
  27. J. Motyl, Existence of solutions of set-valued Itô equation, Bull. Acad. Pol. Sci. 46 (1998), 419-430.
  28. J. Motyl and J. Syga, Properties of set-valued stochastic integrals, Discuss. Math. Probab. Stat. 26 (2006), 83-103.
  29. J. Motyl and J. Syga, Selection property of Stratonovich set-valued integral, Dynamics of Continuous, Discrete and Impulsive Systems 17 (2010), 431-443.
  30. P. Protter, Stochastic Integration and Differential Equations, Springer-Verlag, 2nd Edition, Version 2.1 (Berlin - Heideberg - New York, 2005).
  31. D. Repovš and P.V. Semenov, Continuous selections of multivalued mappings (Kluwer Academic Publishers (Dordrecht, Boston, London, 1998)).
  32. F. Russo and P. Vallois, Forward, backward and symmetric stochastic integration, Probab. Theory Relat. Fields 97 (1993), 403-421.
  33. F. Russo and P. Vallois, The generalized covariation process and Ito formula, Stochastic Process. Appl. 59 (1995), 81-104.
  34. J. Syga, Application of semimartingale measure to the investigation of stochastic inclusion, Dynam. Systems Appl. 21 (2012), 393-406.
Pages:
7-27
Main language of publication
English
Received
2014-08-30
Published
2015
Exact and natural sciences