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Çukurova University
01330 Adana, Turkey

e-mail: agenc@cu.edu.tr

Abstract

We derive an explicit expression for the single moments of order statis-
tics from the generalized t (GT ) distribution. We also derive an expression
for the product moment of any two order statistics from the same distribu-
tion. Then the location-scale estimating problem of a real data set is solved
alternatively by the best linear unbiased estimates which are based on the
moments of order statistics.
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1. Introduction

The generalized t (GT ) distribution has the following probability density function
(pdf)

(1) f(x; p, q) =
p

2q1/pB(1/p, q)

(

1 +
|x|p

q

)

−q−1/p

,

where p > 0 and q > 0 are shape parameters and B(·, ·) is the beta function. The
GT distribution was defined by McDonald and Newey [11] to develop a partially
adaptive M -regression procedure. The procedure includes many other estimation
methods such as least squares, least absolute deviation and Lp.
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The shape parameters p and q control the tails of the distribution. Larger values
of p and q are associated with thinner tails of the distribution. Similarly, smaller
values of the shape parameters correspond to thicker tails. Thus, the GT dis-
tribution is useful in accommodation both leptokurtic an platykurtic symmetric
unimodal distributions.

The GT distribution includes some subdistributions such as, for p = 2 we get
the usual t distribution with degrees of freedom 2q, and for p → ∞ and q → ∞ we
get the uniform and power exponential distributions, respectively. When p ≤ 1,
we have the cuspidate distributions.

The cdf of the GT distribution is

F (x; p, q) =
1

2

[

1 + sgn(x)Ig(x)

(

1

p
, q

)]

,

where g(x) = |x|p/(q + |x|p) and Ix(a, b) is the incomplete beta function ratio
defined by the following integral

Ix(a, b) =
1

B(a, b)

∫ x

0
wa−1(1− w)b−1 dw.

This function has the following series expansion

(2) Ix(a, b) =
xa

B(a, b)

∞
∑

k=0

(1− b)kx
k

(a+ k)k!
,

where (z)k = z(z+1) · · · (z+k−1) denotes the ascending factorial with (z)0 = 1.

The GT distribution is known as an alternative heavy-tailed distribution in
robust statistical procedures. Arslan and Genç [2] considered the distribution
in location-scale estimating problem. Arslan [3] introduced the multivariate ex-
tension of the distribution and studied its properties in a more general class of
distributions within the family of elliptically contoured distributions. Wang and
Romagnoli [18] proposed to use the GT distribution to characterize the process
data in case of the violation of the normality assumption. Nadarajah [13] studied
the cumulative distribution function of the GT distribution and derived several
explicit formulas for it. Choy and Chan [4] developed a scale mixtures of uni-
form representation of the GT distribution and used this representation in Gibbs
sampling algorithm efficiently. Finally, Fung and Seneta [8] defined another gen-
eralized version of the multivariate version of the distribution by using extended
generalized inverse gamma distribution in a mixture. Genç [9] used the GT dis-
tribution to obtain an extended Birnbaum-Saunders distribution. Wang, Choy
and Chan [19] modeled financial return time series and time-varying volatility
data with the GT distribution. Recently, Vu [17] considered the GT distribution
in data reconciliation estimation.
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On the other hand, moments of order statistics play an important role in various
fields especially in statistical inference. Nadarajah [12, 14] obtained exact expres-
sions for the moments of order statistics from several well known distributions
by using the generalized Kampé de Fériet function which is a kind of special
function. This function of n variables ([10, 6]) is defined as

FA:B
C:D

[

a1, . . . , aA :

c1, . . . , cC :

b1,1, . . . , b1,B ;

d1,1, . . . , d1,D;

. . .

. . .

; bn,1, . . . , bn,B;

; dn,1, . . . , dn,D;
x1, . . . , xn

]

= FA:B
C:D

[

(a) :

(c) :

(b1);

(d1);

. . .

. . .

; (bn);

; (dn);
x1, . . . , xn

]

=
∞
∑

m1=1

· · ·
∞
∑

mn=1

{

∏A
j=1 (aj ,

∑n
i=1 mi)

}{

∏B
j=1(b1,j ,m1) · · · (bn,j,mn)

}

{

∏C
j=1 (cj ,

∑n
i=1 mi)

}{

∏D
j=1(d1,j ,m1) · · · (dn,j,mn)

}

×
xm1

1 · · · xmn
n

m1! · · ·mn!

=
∑

(

(a),
∑

m
)(

(b1),m1

)

· · ·
(

(bn),mn

)

(

(c),
∑

m
)(

(d1),m1

)

· · ·
(

(dn),mn

)

xm1

1 · · · xmn
n

m1! · · ·mn!
,

where (a) = (a1, . . . , aA) and (bj) = (bj,1, . . . , bj,B) are sequences of numbers.
(a, n) = Γ(a+ n)/Γ(a) = a(a+ 1) · · · (a+ n− 1), and (a, 0) = 1 for convenience.
We will also obtain our results in terms of this function in the paper. We derive
an exact expression for the moments of order statistics from the GT distribution
and further, we also search for an exact expression for the product moment of
any two order statistics from the same distribution.

2. Single moments

The order statistics are one of the important topics in statistics and related fields
(see e.g. [1]). For a random sample X1, X2, . . . ,Xn of size n from the distribution
with cdf F (x) and pdf f(x), the pdf of the rth order statistic Xr:n, denoted by
fr:n(x), for 1 ≤ r ≤ n is given by

(3) fr:n(x) =
n!

(r − 1)!(n − r)!
[F (x)]r−1 [1− F (x)]n−r f(x).

For the GT distribution we have
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fr:n = r

(

n

r

)

p

2nq1/pB(1/p, q)

(

1 +
|x|p

q

)

−q−1/p [

1 + sgn(x)Ig(x)

(

1

p
, q

)]r−1

×

[

1− sgn(x)Ig(x)

(

1

p
, q

)]n−r

,

where −∞ < x < ∞. For brevity we shall hereafter use Ix to denote Ix(1/p, q).

For the kth moment of Xr:n from a symmetric distribution we have

E(Xk
r:n) = r

(

n

r

)
∫

∞

−∞

xk[F (x)]r−1[1− F (x)]n−rf(x) dx

= r

(

n

r

)[
∫

∞

0
xk[F (x)]r−1[1− F (x)]n−rf(x) dx

+(−1)k
∫

∞

0
xk[F (x)]n−r[1− F (x)]r−1f(x) dx

]

= A(k, n, r) + (−1)kA(k, n, n − r + 1)

so that it is sufficient to find A(k, n, r) in searching k th moment of an order
statistic from a symmetric distribution defined on the whole real line.

For the GT distribution we have

A(k, n, r) = C

∫

∞

0
xk
(

1 +
xp

q

)

−q−1/p
[

1 + Ig(x)
]r−1 [

1− Ig(x)
]n−r

,

where

C = r

(

n

r

)

p

2nq1/pB(1/p, q)
.

By change of variable y = xp/(q + xp), we have

A(k, n, r) =
Cq(k+1)/p

p

∫ 1

0
y(k+1)/p−1(1− y)−k/p+q−1(1 + Iy)

r−1(1− Iy)
n−r dy.

By binomial expansions of the two incomplete beta function ratio factors in the
integrand, we have

A(k, n, r) =
Cq(k+1)/p

p

r−1
∑

i=0

n−r
∑

j=0

(

r − 1

i

)(

n− r

j

)

(−1)j
∫ 1

0
y(k+1)/p−1

× (1− y)−k/p+q−1Ii+j
y dy.(4)
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By (2), the integral, say I, in (4) becomes

I =

∫ 1

0
y(k+1)/p−1(1− y)−k/p+q−1

(

y1/p

B(1/p, q)

∞
∑

m=0

(1− q)mym

m!(1/p +m)

)i+j

dy.

Now by the generalized multinomial theorem we have

I =
1

[B(1/p, q)]i+j

∞
∑

m1,...,mi+j=0

i+j
∏

t=1

(1− q)mt

mt!(1/p +mt)

∫ 1

0
y(k+1+i+j)/p+

∑i+j
t=1

mt−1

× (1− y)−k/p+q−1 dy

=
∞
∑

m1,...,mi+j=0

i+j
∏

t=1

(1− q)mt

mt!(1/p +mt)

B((k + i+ j + 1)/p +
∑i+j

t=1 mt, q − k/p)

[B(1/p, q)]i+j
,

where pq − k > 0. Since (z)k = Γ(z + k)/Γ(z), we have

I =

∞
∑

m1,...,mi+j=0

(

k+i+j+1
p

)

∑i+j
t=1

mt

B
(

q − k
p ,

k+i+j+1
p

)

pi+j
∏i+j

t=1(1− q)mt

(

1
p

)

mt

(

q + i+j+1
p

)

∑i+j
t=1

mt

[

B
(

1
p , q
)]i+j

∏i+j
t=1 mt!

(

1
p + 1

)

mt

=
B
(

q − k
p ,

k+i+j+1
p

)

pi+j

[

B
(

1
p , q
)]i+j

F 1:1
1:2

[

k+i+j+1
p :

q + i+j+1
p :

(1− q, 1p);
1
p + 1 ;

. . .

. . .

; (1− q, 1p);

; 1
p + 1 ;

1, . . . , 1

]

.

By putting this last result in (4) we obtain

A(k, n, r) = r

(

n

r

)

qk/p

2n

r−1
∑

i=0

n−r
∑

j=0

(

r − 1

i

)(

n− r

j

)

(−1)j
B
(

q − k
p ,

k+i+j+1
p

)

pi+j

[

B
(

1
p , q
)]i+j+1

× F 1:2
1:1

[

k+i+j+1
p :

q + i+j+1
p :

(1− q, 1p);
1
p + 1 ;

. . .

. . .

; (1 − q, 1p);

; 1
p + 1 ;

1, . . . , 1

]

.

where pq−k > 0. This result contains only two finite sums and a special function,
that is the generalized Kampé de Fériet function. This special function is not
available in most mathematical softwares. However, the relation
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F 1:2
1:1

[

a :

a+ b :

(c1, d1);

f1 ;

. . .

. . .

; (cn, dn);

; fn ;
s1, . . . , sn

]

=
1

B(a, b)

∫ 1

0
xa−1(1− x)b−1

× 2F1(c1, d1; f1; s1x) · · · 2F1(cn, dn; fn; snx) dx

which can be found in Exton [7] can be used in computations since generalized
hypergeometric functions are implemented in many mathematical programs for
example in Mathematica Software [20].

3. Product moment

The joint pdf of Xr:n and Xs:n for 1 ≤ r < s ≤ n is given by

fr,s:n(x, y) = Cs,s,n [F (x)]r−1 [F (y)− F (x)]s−r−1 [1− F (y)]n−s f(x)f(y),

where

Cr,s,n =
n!

(r − 1)!(s − r − 1)!(n − s)!

and −∞ < x < y < ∞.
For the product moment of Xr:n and Xs:n from a symmetric distribution, we

have

1

Cr,s,n
E(Xr:nXs:n) =

∫

∞

−∞

∫ x

−∞

xy[F (y)]r−1[F (x)− F (y)]s−r−1[1− F (x)]n−s

× f(x)f(y) dy dx

=

∫ 0

−∞

∫

−y

y
xy[F (y)]r−1[F (x)− F (y)]s−r−1[1− F (x)]n−s(5)

× f(x)f(y) dx dy

+

∫

∞

0

∫ x

−x
xy[F (y)]r−1[F (x)− F (y)]s−r−1[1− F (x)]n−s

× f(x)f(y) dy dx.

Now let

D(n, r, s) =

∫

∞

0

∫ x

−x
xy[F (y)]r−1[F (x)− F (y)]s−r−1[1− F (x)]n−sf(x)f(y) dy dx.

Then using appropriate change of variable and the symmetry of the distribution,
the first double integral in (5) becomes
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∫

∞

0

∫ t

−t
(−1)s−r−1(−x)t[1− F (t)]r−1[F (−x)− F (t)]s−r−1[F (−x)]n−s

× f(−x)f(t) dx dt.

Continuing this process once again, this last integral equals

∫

∞

0

∫ x

−x
xy[1− F (x)]r−1[F (y)− F (x)]s−r−1[F (y)]n−sf(x)f(y) dy dx,

which is D(n, n− s+ 1, n − r + 1). Then the product moment is given by

E(Xr:nXs:n) = Cr,s,n [D(n, r, s) +D(n, n− s+ 1, n− r + 1)] .

As in the single moments case, it is sufficient to find D(n, r, s) in searching the
product moment of two order statistics from a symmetric distribution defined on
the whole real line.

We also have

(6) D(n, r, s) =

∫

∞

0
x[1− F (x)]n−sf(x)[ξ1(x) + ξ2(x)] dx,

where

ξ1(x) =

∫ 0

−x
y[F (y)]r−1[F (x)− F (y)]s−r−1f(y) dy

and

ξ2(x) =

∫ x

0
y[F (y)]r−1[F (x)− F (y)]s−r−1f(y) dy.

Let us proceed with ξ2(x). We have

ξ2(x) =
C∗

2s−2

∫ x

0
y
[

1 + Ig(y)
]r−1 [

Ig(x) − Ig(y)
]s−r−1

(

q + yp

q

)

−q−1/p

dy,

where C∗ is the normalizing constant of the GT distribution. By change of
variable u = yp/(q + yp), we have

ξ2(x) =
C∗q2/p

2s−2p

∫ g(x)

0
u2/p−1(1− u)q−1/p−1(1 + Iu)

r−1
[

Ig(x) − Iu
]s−r−1

du.
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By binomial expansions of the two factors involving incomplete beta function
ratios in the integrand, we have

ξ2(x) =
C∗q2/p

2s−2p

r−1
∑

i=0

s−r−1
∑

j=0

(

r − 1

i

)(

s− r − 1

j

)

(−1)jIs−r−j−1
g(x)

∫ g(x)

0
u2/p−1

× (1− u)q−1/p−1Ii+j
u du.(7)

Now, first using the series representation (2) of the incomplete beta function ratio
and then using the generalized multinomial theorem, the integral, say II, in (7)
becomes

II =

∫ g(x)

0
u2/p−1(1− u)q−1/p−1

(

u1/p

B(1/p, q)

∞
∑

m=0

(1− q)mum

m!(1/p +m)

)i+j

du

=

∞
∑

m1,...,mi+j=0

i+j
∏

t=1

(1− q)mt

mt!(1/p +mt)

B((2 + i+ j)/p +
∑i+j

t=1 mt, q − 1/p)

[B(1/p, q)]i+j

× Ig(x)

(

(2 + i+ j)/p +

i+j
∑

t=1

mt, q − 1/p

)

.

Now ξ2(x) becomes

ξ2(x) =
C∗q2/p

2s−2p

r−1
∑

i=0

s−r−1
∑

j=0

(

r − 1

i

)(

s− r − 1

j

)

(−1)jIs−r−j−1
g(x)

∞
∑

m1,...,mi+j=0

×

i+j
∏

t=1

(1− q)mt

mt!(1/p +mt)

[g(x)](2+i+j)/p+
∑i+j

t=1
mt

[B(1/p, q)]i+j

×

∞
∑

u=0

(1− q + 1/p)u[g(x)]
u

u!
(

(2 + i+ j)/p +
∑i+j

t=1 mt + u
) .(8)

After putting (8) in (6), the integral

(9)

∫

∞

0
x[1− F (x)]n−sf(x)ξ2(x) dx

becomes
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p

2n[B(1/p, q)]2

r−1
∑

i=0

s−r−1
∑

j=0

n−s
∑

k=0

(

r − 1

i

)(

s− r − 1

j

)(

n− s

k

)

(−1)k+j

×
1

[B(1/p, q)]i+j

∞
∑

m1,...,mi+j=0

i+j
∏

t=1

(1− q)mt

mt!(1/p +mt)

×

∞
∑

u=0

(1− q + 1/p)u

u!
(

(2 + i+ j)/p +
∑i+j

t=1 mt + u
)(10)

×

∫

∞

0
xIs−r−j−1+k

g(x) (1 + xp/q)−q−1/p[g(x)](2+i+j)/p+
∑i+j

t=1
mt+u dx.

The integral in (10) is similar to the one studied in the previous section, and after
using the same steps, for pq > 1 it becomes

q2/pB
(

q − 1
p ,

3+i+s−r+k
p + u+

∑i+j
t=1 mt

)

p2−s+r+j−k
[

B
(

1
p , q
)]s−r−j−1+k

× F 1:2
1:1

[

3+i+s−r+k
p + u+

∑i+j
t=1 mt :

q + 2+i+s−r+k
p + u+

∑i+j
t=1 mt :

(1− q, 1p);
1
p + 1 ;

. . .

. . .

; (1− q, 1p);

; 1
p + 1 ;

1, . . . , 1

]

.

(11)

After putting (11) in (10) and then doing some arrangements, (9) becomes

1

2n

r−1
∑

i=0

s−r−1
∑

j=0

n−s
∑

k=0

Cn,r,s(i, j, k)
B(q − 1/p, (3 + i+ s− r + k)/p)pi+s−r+k

(2 + i+ j)[B(1/p, q)]i+s−r+k+1

∞
∑

m1,...,mi+j=0

×

i+j
∏

t=1

(1− q)mt
(1/p)mt

mt!(1/p + 1)mt

((2 + i+ j)/p)∑i+j
t=1

mt
((3+i+s−r+k)/p)∑i+j

t=1
mt

(1 + (2 + i+ j)/p)∑i+j
t=1

mt
(q + (2+i+s−r+k)/p)∑i+j

t=1
mt

×

∞
∑

u=0

(1− q + 1/p)u((3 + i+ s− r + k)/p +
∑i+j

t=1 mt)u

u!((2 + i+ j)/p +
∑i+j

t=1 mt + 1)u(q + (2 + i+ s− r + k)/p +
∑i+j

t=1 mt)u

× F 1:2
1:1

[

3+i+s−r+k
p + u+

∑i+j
t=1 mt :

q + 2+i+s−r+k
p + u+

∑i+j
t=1 mt :

(1− q, 1p);
1
p + 1 ;

. . .

. . .

; (1 − q, 1p);

; 1
p + 1 ;

1, . . . , 1

]

.

(12)
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where

Cn,r,s(i, j, k) =

(

r − 1

i

)(

s− r − 1

j

)(

n− s

k

)

(−1)k+j.

This last result contains finite and infinite sums. Unfortunately, we do not know
whether the Kampé de Fériet function in (12) is reduced so that we can obtain
a simpler expression for (9). On the other hand, the evaluation of the integral

∫

∞

0
x[1− F (x)]n−sf(x)ξ1(x) dx

follows the same steps as we did for (9), and is equal to (12), in which (−1)k+j

is replaced by (−1)i+k+1 only.
As a submodel of the GT distribution, Vaughan [16] also derived an exact

expression for the product moment of any two order statistics from the Cauchy
distribution in terms of an infinite series. He also analyzed the convergence of the
series and tried to find some bound on truncation error of the series. For the GT
distribution, we note that the complexity of the expressions derived here makes
it very difficult.

4. An application

We consider the Rosner data set [15]. This data set consists of 10 monthly
diastolic blood pressure measurements and as follows: 90, 93, 86, 92, 95, 83, 75,
40, 88, 80. We note that the observation 40 is far from the other observations.
Thus, it is a (possible) outlier. The sample mean of the data is 82.2, and the
standard deviation is 19.1. They seem to be influenced by the outlier badly. In
order to summarize the location and scale of the data more accurately, one should
use a robust method. Since outliers in data produce thick-tailed distributions, one
may use a thick-tailed distribution like the GT for modeling and then estimate the
location and scale parameters. We follow the second way and model the data with
the GT (µ, σ) distribution where µ is the location parameter and σ is the scale
parameter. We give the shape parameters the role of robustness tuning constants
like the ordinary Student’s t distribution, and fix them at p = 1.5 and q = 2.
This specific member of the GT distributions family is relatively a heavy-tailed
one so that it is suitable for modeling such a data set. To apply the moments of
order statistics from the GT distribution, we search for the best linear unbiased
estimates (BLUE’s) of the location-scale parameters. For a reference, see David
and Nagaraja [5] p. 185.

Now let y1:10 ≤ · · · ≤ y10:10 be the ordered Rosner data. Then the BLUE
vector of µ and σ is given by

(

µ̂
σ̂

)

= Cy,
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where

C = (ATV−1A)−1ATV−1;

A = (1,α), 1T = (1, . . . , 1), yT = (y1:10, . . . , y10:10), α
T = (α1:10, . . . , α10:10),

αr:10 = E(Yr:10) and V is the variance-covariance matrix of the ordered observa-
tions. All the vectors are 10 × 1. Then the coefficients for the BLUE of µ, that
is the first row of C, are computed as

− 0.008733,−0.012176, 0.051563, 0.172370, 0.299810,

0.299524, 0.171067, 0.047562,−0.014850,−0.006137

and the coefficients for the BLUE of σ, that is the second row of C, are computed
as

− 0.029986,−0.184240,−0.232130,−0.214326,−0.091642,

0.092750, 0.214739, 0.251252, 0.149359, 0.044223,

by Mathematica software [20]. The BLUE’s of µ and σ are then computed as
µ̂ = 87.11867 and σ̂ = 9.437156. We note that µ̂ is very close to 87 which is
the sample median, a robust estimate of location. Further, there exist variances
of the estimates on the diagonal of (ATV−1A)−1σ2. They are computed as
V ar(µ̂) = 0.102006σ2 , V ar(σ̂) = 0.145115σ2 and Cov(µ̂, σ̂) = 0.
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