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Abstract

We introduce and analyze a class of estimators for distribution parame-
ters based on the relationship between the distribution function and the em-
pirical distribution function. This class includes the nonlinear least squares
estimator and the weighted nonlinear least squares estimator which has been
used in parameter estimation for lifetime data (see e.g. [6, 8]) as well as the
generalized nonlinear least squares estimator proposed in [3]. Sufficient con-
ditions for consistency and asymptotic normality are given. Capability and
limitations are illustrated by simulations.
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1. Introduction

There is a huge number of methods which could be used for parameter estima-
tion in the statistical model that describes trials of a random variable with the
distribution unknown up to the parameter value. The right choice significantly
depends on the distribution type as well as on the possible dependence between
trials. If we focus on the specific distribution that is of interest for applications,
a detailed investigation and comparison of different estimation methods are al-
ways welcome. For instance, such studies have been done for Weibull, generalized
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Pareto, generalized Rayleigh, shifted Gompertz and many other distributions (see
e.g. [1, 5, 8, 11, 14, 16, 18]). Here we introduce and analyze a class of estimators
for distribution parameters based on the relationship between the distribution
function and the empirical distribution function. We suggest to take this class
into consideration while searching for the most appropriate estimator in the spec-
ified conditions and distribution type.

We primarily focus on the basic statistical model where a random sample
(X1, . . . ,Xn) comes from independent trials of the random variable X with the
distribution function F (x; θ) and θ ∈ Θ ⊆ R

p the unknown parameter, but gen-
eralization that allows a different dependence structure has also been discussed.

The class of estimators we introduce here includes the nonlinear least squares
estimator and the weighted nonlinear least squares estimator which are used in
parameter estimation (see e.g. [6, 8]) for lifetime data as well as the generalized
nonlinear least squares estimator proposed in [3].

We have proved sufficient conditions for consistency and asymptotic normal-
ity for estimators which belong to the described class. Efficiency is also discussed.
Quality that can be obtained with these estimators is illustrated by simulations.
The nonlinear regression theory was the motivation to introduce these estimators,
but it is not used in the proof of week consistency and asymptotic normality. For
this we use the generalized method of moments (GMM). Namely, this method
and properties of the distribution function allow us to assure consistency even
without compactness of the parameter space.

Our presentation is organized as follows. In Section 2, the nonlinear regres-
sion framework is explained, which has been the motivation for the introduced
class of estimators. Based on the GMM theory sufficient conditions for weak
consistency are discussed in Section 3, while asymptotic normality and efficiency
are presented in Section 4. It is important to point out that we do not need
the assumption of marginal independence for the random sample in these con-
siderations. In Section 5, we apply the presented theory to the independent and
identically distributed (IID) random sample. Section 6 gives results of numerical
experiments which illustrate capability of the proposed estimator class in the IID
case as well as problems we sometimes face with these estimators. Results of an
application to the real data set are given in Section 7. We conclude with some
general remarks in Section 8.

2. Nonlinear generalized least squares framework

Let x = (x1, . . . , xn)
τ be a sample of n observations on a continuous random vari-

able X with a distribution function F (·; θ). By θ and Θ we denote an unknown
finite-dimensional parameter to be estimated from the sample and the parame-
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ter space, respectively. Throughout this section, F̂ denotes a sample empirical
distribution function, i.e.,

F̂n(x) =
1

n

n
∑

i=1

I(−∞,x](xi).

The idea presented in [6] is to fit the distribution function F (·; θ) to the data
(F̂n(x1), . . . , F̂n(xn)) by the least squares method (LS), meaning to compute the
parameter value θ̂ which minimizes the function

SLS(θ) =

n
∑

i=1

(F (xi, θ)− F̂n(xi))
2.

To discuss possible statistical reasons for choosing this estimator we consider
the following nonlinear regression model for univariate responses F̂ (xi), i ∈
{1, . . . , n}:

F̂n(xi) = F (xi; θ) + εi, i ∈ {1, . . . , n}.

εi, i ∈ {1, . . . , n} represent errors. At this moment, let us recall the empirical
distribution function as a statistic. If we choose x ∈ R and an IID random sample
(X1, . . . ,Xn) from the distribution F (·; θ), we know that the statistic

1

n

n
∑

i=1

I(−∞,x](Xi)

has an asymptotically normal distribution with mean F (x; θ)1. This is the rea-
son why we can rely on the fact that the errors have zero mean and a normal
distribution for large n in the posted nonlinear regression model. This could
be a classical case of nonlinear regression if the residuals were uncorrelated and
homoscedastic, but they are not.

It is well-known in nonlinear regression theory with correlated errors that
the covariance matrix of (ε1, . . . , εn), let us denote it by Σ, should be taken into
account ([15]), so parameters are estimated by minimizing the function

SGLS(θ) = (F̂n(x)− F (x; θ))τΣ−1(F̂n(x)− F (x; θ)).

Here, x stands for (x1, . . . , xn)
τ . For the real function f , f(x) stands for (f(x1),

. . . , f(xn))
τ . This method is called the generalized least squares method (GLS).

Let us mention that both functions SLS and SGLS can be shown in the same
form when using the appropriate n × n symmetric positive definite matrix A.

1The same is often true for random samples with identically distributed but not independent
univariate margins (see e.g. [4]).
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So, if we denote

SA(θ) = (F̂n(x)− F (x; θ))τA(F̂n(x)− F (x; θ)),

then A is equal to the identity matrix I for the least square method and for the
generalized least square method A = Σ−1.

In this paper, we analyze properties of the estimator obtained by minimizing
the function SA, where A is a symmetric positive definite matrix. If the matrix
A is applied, we will denote the estimator by θ̂A.

Simulation results presented in [3] show that minimization of SGLS = SΣ−1

is able to produce an estimator with good statistical properties, especially for
relatively large or large data sets. By simulating IID samples from the Weibull
distribution it is shown that this estimator is comparable to the maximum like-
lihood estimator by means of comparing the corresponding root mean square
errors (RMSE).

Although the idea for the application of the least squares principle presented
here comes from nonlinear regression theory, theoretical properties of the esti-
mator cannot be taken automatically. Here we face a two-stage procedure. The
first step is to compute empirical distribution from the data, i.e., to apply a non-
parametric estimation method to estimate the distribution function. It is obvious
that properties of the estimator applied in the first step influence properties of
the unknown parameter estimator at the end. In the following sections we dis-
cuss statistical properties of the estimator θ̂A using the generalized method of
moments (GMM) with appropriate moment condition.

3. Weak consistency

Let us assume that x = (x1, . . . , xn)
τ denotes the data coming from the random

sample X = (X1, . . . ,Xn) with identically distributed (not necessarily indepen-
dent) univariate margins. Following the notification introduced in the previous
section, we suppose that F (·; θ0) stands for the true common distribution func-
tion of univariate margins, which means that θ0 is the true value of the unknown
parameter θ ∈ Θ. Throughout this and the following sections we use the notation
F̂n(x) for the empirical distribution function.

To formulate the problem in a GMM setting (see e.g. [7]) let us choose k ∈ N

arbitrary real numbers u1 < u2 < . . . < uk, u = (u1 . . . , uk)
τ , satisfying

F (ui; θ0) 6= F (uj ; θ0), i 6= j, F (u1; θ0) 6= 0.(1)

Based on these numbers we define the function f : R×Θ → R
k by

f(x, θ) = (I(−∞,u1](x)− F (u1; θ), . . . , I(−∞,uk](x)− F (uk; θ))
τ
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which will be used to set k moment conditions. Namely, it holds 2

Ef(Xt, θ0) = 0, ∀t = 1, . . . , n.

By denoting fn(θ) the corresponding sample moments:

fn(θ) =
1

n

n
∑

t=1

f(Xt, θ),

we are able to present the estimator θ̂A from the previous section as a GMM
estimator. Namely, it holds that

fn(θ) = (F̂n(u1)− F (u1; θ), . . . , F̂n(uk)− F (uk; θ))
τ .

If we choose a positive definite matrix A, we define a GMM estimator for θ:

θ̂A(u1, . . . , uk) = argminθfn(θ)
τAfn(θ).

The estimator θ̂A from the previous section can be presented in this way if we
choose k = n and the ordered data set (x(1), . . . , x(n)) for u. In order to do this,
the data x have to satisfy the condition

F (xi; θ0) 6= F (xj ; θ0), i 6= j, F (x(1); θ0) 6= 0

(which is not restrictive for absolutely continuous random variables). Thus, θ̂A =
θ̂A(x(1), . . . , x(n)), meaning that the estimator

θ̂A = argminθSA(θ)

can be presented in the form of a GMM estimator.
In the presented setting we have the GMM estimator for any selection of

k ∈ N and u1, . . . , uk ∈ R satisfying condition (1). To ensure the base for iden-
tifiability of the parameter we must define a unique strategy of choosing u. So,
we have room to select appropriate k numbers u1, . . . , uk to get desired estimator
properties. This will be discussed in the sequel.

The results presented in [7] applied to the described model guarantee consis-
tency of the GMM estimator if the following conditions are fulfilled:

C1) g(θ) = Ef(Xt, θ) exists and it is finite for all θ ∈ Θ, t = 1, . . . , n.

C2) There exists a θ0 ∈ Θ such that g(θ) = 0 if and only if θ = θ0.

2As usual, when various operations on a function of X = (X1, . . . , Xn) are taken, such as
expectation or probability limit, the value θ0 is used. Thus, we omit the subscript θ0 from these
notations.
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C3) If fn(θ) = ((fn)1(θ), . . . , (fn)k(θ))
τ , g(θ) = (g1(θ), . . . , gk(θ))

τ , then

sup
θ∈Θ

|(fn)j(θ)− gj(θ)| P→ 0, ∀j = 1, . . . , k.

As gj(θ) = F (uj ; θ0)− F (uj ; θ), assumption C1 is fulfilled.

Assumption C3 is true if the random vector X satisfies conditions which
guarantee that the empirical distribution function converges in probability to the
true distribution function. Namely, (fn)j(θ)− gj(θ) = F̂n(uj)− F (uj ; θ0), for all
j = 1, . . . , k and θ ∈ Θ, so that

sup
θ∈Θ

|(fn)j(θ)− gj(θ)| = |F̂n(uj)− F (uj ; θ0)|, ∀j = 1, . . . , k.

To satisfy condition C2 we must be careful with the selection of u. A reasonable
way of choosing u is to use the data set. We use the maximal subset of x1, . . . , xn
such that assumptions (1) and C2 hold (if there is such a subset).

Assumption (1) is not restrictive for absolutely continuous distributions so
that in almost all cases the whole data set can be used. Assumption C2 stated
in terms of our moment condition means that

F (uj ; θ0) = F (uj ; θ), ∀j = 1, . . . , k ⇔ θ = θ0.

If there are no distribution functions from the desired class, x 7→ F (x; θ1) and
x 7→ F (x; θ2) with intersections in all u1, . . . , uk for θ1 6= θ2, this assumption will
be fulfilled. Thus, for k large enough and absolutely continuous distributions this
assumption is also not too restrictive.

It is well-known from the theory of GMM estimators that the sequence of
stochastic positive definite weighting matrices An can be used instead of the
deterministic weighting matrix A. To guarantee consistency in this case, it is
enough to ensure that

C4) there exists a non-random sequence of positive definite matrices Ān such

that An − Ān
P→ 0.

In the sequel, we use this property to discuss asymptotic efficiency as well as to
choose the best estimator from the class in this sense.

4. Asymptotic efficiency

Assumptions in addition to those referring to consistency are needed to discuss
asymptotic efficiency. We will use the assumptions presented in [7].
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E1) f(Xt, θ) is continuously differentiable with respect to θ on Θ.

E2) For any sequence θ⋆n such that θ⋆n
P→ θ0, Gn(θ

⋆
n)− Ḡn

P→ 0.

Here Gn(θ) =
∂fn(θ)
∂θτ and Ḡn is a sequence of matrices that do not depend

on θ.

E3) f(Xt, θ0) satisfies a central limit theorem, so that

V̄ −1/2
n

√
nfn(θ0)

d→ Z, Z ∼ N (0, Ik),

where V̄n is a sequence of k×k non-random positive definite matrices defined
as

V̄n = nVarfn(θ0).

Under assumptions C1–C4 and E1–E3 the estimator θ̂An(u1, . . . , uk) is asymp-
totically normal and the asymptotic covariance matrix for a given sequence of
weighting matrices An is

(Ḡτ
nĀnḠn)

−1Ḡτ
nĀnV̄nĀnḠn(Ḡ

τ
nĀnḠn)

−1.

This result enable us to choose the weighting matrix to minimize the asymptotic
covariance matrix.

It is well-known that the difference

(Ḡτ
nĀnḠn)

−1Ḡτ
nĀnV̄nĀnḠn(Ḡ

τ
nĀnḠn)

−1 − (Ḡτ
nV̄

−1
n Ḡn)

−1

is positive semi-definite for all Ān. This suggests that, concerning efficiency, an
inverse of the consistent estimator for V̄n should be used as the weighting matrix
(if it exists).

5. Independent and identically distributed random sample

Let us assume that X = (X1, . . . ,Xn) is an IID random sample. In this case,
properties of the empirical distribution function guarantee that assumptions C3
and E3 are fulfilled. Also, matrix sequences Ān, Ḡn from assumptions C4 and
E2 can be treated as constant matrices and the matrix V arfn(θ0) can be derived
explicitly by using the true distribution function. Let us summarize the estima-
tion procedure that ensures the consistent estimator and the way of choosing the
weighting matrix to achieve the most efficient estimator for an IID sample within
the described class of estimators.
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To ensure consistency, it is enough to choose numbers u1, . . . , uk satisfying con-
dition (1) and assumption C2. If the unknown distribution function is absolutely
continuous and the data set large enough, it can be mainly done by choosing all
different values from the data set.

If the function θ 7→ F (x; θ) is continuously differentiable on Θ, for all x ∈ R,
then assumption E1 is satisfied. Also, continuity of the derivative in this case
ensures that whenever we have a sequence θ⋆n converging to θ0 in probability,

Gn(θ
⋆
n) = G(θ⋆n) = −∂F (u; θ)

∂θτ
|θ⋆n

P−→ −∂F (u; θ)

∂θτ
|θ0

meaning that assumption E2 is also satisfied. Thus, to achieve asymptotic nor-
mality of the estimator θ̂A(u1, . . . , uk), in addition to condition (1) and assump-
tion C2, the sufficient condition is that the function θ 7→ F (x; θ) is continuously
differentiable on Θ for all x ∈ R.

In this case, an inverse of the matrix

Vk = Var[(I(−∞,u1](Xt)− F (u1; θ0), . . . , I(−∞,uk](Xt)− F (uk; θ0))
τ ]

should be chosen as the weighting matrix to achieve the most efficient estimator
from the class of estimators {θ̂A(u1, . . . , uk) : A positive semidefinite}. The value
θ0 is unknown but GMM theory allows us to use the consistent estimator instead
(see e.g. [7]). If we compute the matrix Vk we can see that it has a nice form:3

Vk = F (ui ∧ uj; θ0)− F (ui; θ0)F (uj ; θ0), i, j ∈ {1, . . . , k}.(2)

At the end of this section, we conclude that the estimator θ̂A(u1, . . . , uk) is consis-
tent with the right choice of (u1, . . . , uk) for each positive definite non-stochastic
matrix A. In the case of a continuously differentiable distribution function with
respect to the parameter, the estimator will also be asymptotically normal with
the asymptotic covariance matrix that can be easily calculated.

6. Numerical experiments and discussion

In this section, we present results of some numerical experiments to compare
the performance of the introduced class of estimators and other estimators with
respect to their observed biases and mean squared errors (MSE). We compute
the average estimates, observed MSE and bias over replications of IID samples
for different sample sizes. All numerical computations were carried out with
R. Optimizations in all cases were done by the procedures optim() or nlm()

depending on the function to be optimized.

3ti ∧ tj = min{ti, tj}.
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For the purpose of comparison with θ̂A, we choose the maximum likelihood es-
timator and two typical estimators based on the empirical distribution used in
the literature: the goodness-of-fit estimators with the Cramer-von Mises statistic
and with the Anderson-Darling statistic ([11, 13]).

6.1. Weighting matrices

For simulations we have chosen three different forms of the weighting matrix: I,
V̂ −1
n and W−1

n . Here, I is an identity matrix, V̂ −1
n stands for the inverse of the

matrix Vn defined in (2) and evaluated in the consistent estimator of θ. W−1
n

is an inverse of the diagonal matrix with diagonal elements which consistently
estimate the diagonal elements from Vn. The case with A = I corresponds to the
LS estimator from Section 2, so we call this estimator the least squares estimator
and denote it by θ̂LS . If we use the matrix V̂ −1

n , we get the estimator that
corresponds to the generalized least squares approach from Section 2, so we call
it the generalized least square estimator and denote it by θ̂GLS . The case with the
matrix W−1

n corresponds to the method usually called the weighted least squares
so we denote this estimator by θ̂WLS.

We simulated random samples only for absolutely continuous distributions
and used the ordered sample as (u1, . . . , un). To be able to discuss efficiency we
chose only those distributions that satisfy assumption E1. As the LS estimator
was consistent for our data, we use LS estimation to compute matrices V̂ −1

n and
W−1

n for GLS and WLS estimations.

6.2. Exponential distribution

To illustrate a quality level we can get by means of the introduced estimator
θ̂A and a wise choice of the matrix A we simulated random samples from the
exponential distribution, F (x; θ) = 1 − e−

x
θ , x > 0. It is known for this distri-

bution that the maximum likelihood estimator is the sample mean (θ̂ML = X̄n),
it is unbiased and its variance attains the Cramér-Rao lower bound (it is fully
efficient), i.e., the best we can expect for the estimator in the mean square error
sense. We found out that the value of the parameter does not influence the rating
of estimators significantly, so we present and discuss only the results for θ = 2.

For the exponential distribution the weighting matrices for GLS and WLS
estimation are computed as the inverse of

Vn =
[

1− e−
xi∧xj

θ − (1− e−
xi
θ )(1− e−

xj

θ )
]

i,j
, i, j = 1, . . . , n,

or
Wn = diag(1− e−

x1
θ − (1− e−

x1
θ )2, . . . , 1− e−

xn
θ − (1− e−

xn
θ )2),

respectively, evaluated at LS estimation.
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To compute estimates for the asymptotic covariance matrix of the LS, WLS and
GLS estimators we used the expression:

Var θ̂An = (Gτ
nAnGn)

−1Gτ
nAnVnAnGn(G

τ
nAnGn)

−1,

where An stands for the inverse of the chosen matrix (I, Wn or Vn) evaluated at
the estimated parameter value,

Gn =
1

θ2







x1e
−

x1
θ

...

xne
−

xn
θ







(also evaluated at the estimated parameter value). For the LS and GLS estimators
this expression can be simplified so we used expressions

Var θ̂LS = (Gτ
nGn)

−1Gτ
nVnGn(G

τ
nGn)

−1,

and
Var θ̂GLS = (Gτ

nVnGn)
−1.

Table 1 presents average estimates for asymptotic variances of θ̂LS, θ̂WLS and
θ̂GLS over 1000 replications as well as the ML variances for different sample sizes.
Figure 8 shows these values relative to the θ̂ML variance for different sample sizes.

The results confirm our expectation founded on the theory, i.e. the values
for the LS and WLS variances are always greater than the values for the GLS
variances regardless of the sample dimension. Besides, the values for the GLS
variances are really close to the ML variances especially for large sample sizes.

The observed mean square errors and biases over 1000 replications are shown
in Table 2 for all estimators. Figure 8 presents the observed MSE relative to the
observed MSE of the ML estimator and biases for all estimators. Regarding MSE
we can notice similarities in behavior for pairs of estimators: LS and CM, WLS
and AD, GLS and ML, especially for large sample sizes. It is important to point
out that the GLS estimator attained MSE level of the best possible estimator for
the assumed distribution and large sample sizes.

6.3. Generalized Rayleigh distribution

J.G. Surles, W.J. Padgett in [17] proposed the two-parameter Burr Type X dis-
tribution:

F (x;α, λ) = (1− e−(λx)2)α, x > 0, α > 0, λ > 0

and named it the generalized Rayleigh distribution. They observed that it can
be used quite effectively in modeling strength data and also general lifetime data.
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Different properties of the generalized Rayleigh distribution are summarized in
[9]. For α ≤ 0.5 it has a decreasing density function. Otherwise, its density is
unimodal.

In [8], different estimation procedures are used to estimate the unknown pa-
rameters and their performances are compared by simulations. It is shown that,
regarding MSE, the ML estimator can be outperformed by other estimators.
Here we compare the behavior of LS, WLS, GLS, AD, CM and ML estimators
applied to this distribution. An average estimate, the observed MSE and bias
are computed over 500 replications for different sample sizes. The parameter λ

is a scale parameter and its value does not influence the rating among estima-
tors significantly but the value of the shape parameter α does. So, we present
results for λ = 1 and different shape values. Average estimates for theoretical
variances of LS, WLS and GLS estimators are also computed and compared with
the theoretical variance of the ML estimator.

All matrices and estimations are computed analogously to the procedure
presented in Subsection 6.2. As a starting point for the ML and LS estimations
we used α0 = 0.5 for decreasing densities and α = 1 for unimodal densities. The
value for λ0 was then calculated from the equation

median(α, λ) =

[

− 1

λ
ln(1− (

1

2
)

1

α )

]
1

2

,

evaluated at the sample median. As a starting point for the WLS and GLS
estimations we used θ̂LS . We believe this is reasonable as the same value is used
for calculation of the weighting matrices for these methods.

Average estimates of asymptotic variances and different shape values for
n = 30 and n = 500 are presented in Table 3 and in Table 4, respectively.
Figure 8 shows average estimates of asymptotic variances computed relatively to
the maximum likelihood variance for n = 500. These results confirm our expec-
tations. The GLS estimator has the smallest variance in comparison with LS and
WLS estimators but greater than the ML asymptotic variance for all shape val-
ues. In addition to that, values of the asymptotic variances for the GLS estimator
are really close to the values of the asymptotic variances for the ML estimator if
the sample size is large enough.

Average parameter estimates and the observed MSEs for n = 30 and differ-
ent shape values are presented in Table 5. For n = 500, results are summarized
in Table 6. Figure 8 shows average observed bias calculated relatively to the
true parameter value for n = 500 and Figure 8 shows the average observed MSE
calculated relatively to the true parameter value for different shape values. Here
we can also notice similarities in the behavior of LS and CM estimators. Some
similarities in the behavior of WLS and AD estimators are present in most cases
on both sample sizes although not as consistently as for the exponential distri-
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bution. With respect to the pair of ML and GLS estimators we can notice, as
for the exponential distribution, the different behavior in bias. While the ML
estimator mostly overestimates parameter values, the GLS estimator mostly un-
derestimates them with the exception of the estimation of λ if the α values are
not large.

Concerning MSE, for small sample sizes WLS estimators outperform the ML
estimator for α and in these cases the GLS mostly ranks second, i.e., it also mostly
outperforms the MLE. However, for the estimation of λ, the MLE always has the
smallest MSE. For large sample sizes, the MLE is always the best. What is
important to notice here is that the MSE of the GLS estimator are not similar to
the MSE of the ML estimator for large sample sizes. TheWLS and AD estimators
are better although the asymptotic variance of the GLS estimator is really small
and close to the asymptotic variance of the ML estimator. It was shown in [3]
that the similarities in MSEs between ML and GLS estimators are also present if
the model function is the two-parameter Weibull and in some cases for the three-
parameter Weibull model. It means that an increase in the parameter dimension
cannot be the only reason for the aforementioned difference between GLS and
ML mean square errors in the generalized Rayleigh model. While investigating
why this happened, we found out that the differences in biases are one part of
the problem but not the only one. The observed variances for the GLS estimator
in this model are often greater than the theoretical variances. We have noticed
the appearance of outliers in the set of GLS estimations caused by the fact that
the GLS procedure has been most sensible to initial conditions.

7. Real data example

In this section, we apply the described estimation procedures on real data. In
[12], the data on failure and service times for a particular large aircraft model
windshield are given. We fit the generalized Rayleigh distribution on the complete
part of data, i.e., failure time data only. The obtained parameter values and the
corresponding values of the Kolmogorov-Smirnov goodness of fit test statistics
(GOFKS) are shown in Table 7. As it can be seen, all models are acceptable and
the GLS estimation gives the smallest value of the Kolmogorov-Smirnov statistic.

8. Concluding remarks

It is not rare to find the LS or WLS method for parameter estimation in applica-
tions if the data come from independent observations on a random variable with
a parametric distribution function. In doing so, an expression for the distribution
function in its explicit or suitably transformed form is used as the model function
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and the empirical distribution (or its transformation which corresponds to the
transformation of applied distribution function) as the response. Transforma-
tions are usually applied in order to linearize the model function in parameters
to ease the calculation in optimization procedures. This paper introduces and
analyzes the class of estimators that generalizes the mentioned LS and WLS ap-
proach when using the distribution function in its original form (mostly nonlinear
in the parameters).

In this study sufficient conditions are given which assure consistency of the
estimator if it belongs to the introduced class. The most efficient estimator from
this class has also been identified. While analyzing consistency and asymptotic
normality the GMM method has been applied with appropriate moment condi-
tion.

Our study confirms that the suggested class is reasonable for applications.
The conditions that are sufficient for consistency in the IID random sample can
be fulfilled easily. The exponential distribution case confirms that the type of
the weighting matrix can be chosen such that the observed MSE is comparable
to the observed MSE of the best possible estimator. However, the application to
the generalized Rayleigh distribution illustrates that special attention should be
paid to the sensitivity of numerical procedures if non-diagonal weighting matrices
are used. It is also worth mentioning that computations of these estimators can
be carried out with any software for nonlinear regression.

In addition, it is also important that the same class of estimators can be
applied if we deal with random samples with identically distributed but not inde-
pendent univariate margins in the case when the empirical distribution function
is asymptotically normal. In that case, in order to discuss the efficiency of differ-
ent estimators from the introduced class, the asymptotic covariance matrix of the
empirical distribution function should be calculated and estimated consistently.
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Appendix: Tables and Figures

Table 1. Average estimates of asymptotic variances for exponential distribution, θ = 2,
and different sample sizes.

n 30 50 200 300 1000

LS 0.423897 0.326620 0.162420 0.132503 0.072501

WLS 0.402877 0.309615 0.153704 0.125341 0.068535

GLS 0.374088 0.286837 0.141939 0.115734 0.063292

ML 0.365148 0.282843 0.141421 0.115470 0.063246

Table 2. Average estimates and observed mean square errors (in parentheses) for expo-
nential distribution, θ = 2.

n 30 50 200 300 1000

LS 1.907124 1.955387 1.985529 1.992158 2.002336
(0.183494) (0.104294) (0.027263) (0.018308) (0.004848)

CM 2.017626 2.022541 2.002338 2.003403 2.005720
(0.192449) (0.108910) (0.027447) (0.018429) (0.004889)

WLS 1.932000 1.965325 1.985404 1.992233 2.002145
(0.169038) (0.100557) (0.024876) (0.016240) (0.004386)

AD 2.026392 2.027167 2.002878 2.004482 2.006043
(0.171898) (0.099050) (0.024659) (0.016412) (0.004434)

GLS 1.882197 1.930812 1.973390 1.985531 1.997067
(0.148162) (0.086543) (0.022504) (0.013802) (0.003868)

ML 1.990163 2.007764 1.996572 2.002243 2.003335
(0.142825) (0.085568) (0.021549) (0.013746) (0.003889)

Table 3. Average estimates of asymptotic variances for Generalized Rayleigh distribution,
n = 30, λ = 1, and different shape values.

α 0.4 0.8 1.5 2 3 10

LS α 0.010059 0.050017 0.230282 0.471070 1.286170 25.780385
LS λ 0.042271 0.024703 0.017323 0.015325 0.013219 0.009945

WLS α 0.008487 0.041232 0.187216 0.379014 1.020767 20.294971
WLS λ 0.033637 0.020151 0.014266 0.012626 0.010874 0.008216

GLS α 0.007751 0.037580 0.169003 0.338337 0.907569 17.915822
GLS λ 0.029423 0.018123 0.013013 0.011485 0.009871 0.007441

ML α 0.007032 0.033911 0.149267 0.298303 0.800000 15.463000
ML λ 0.025476 0.016173 0.011664 0.010311 0.008889 0.006601
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Table 4. Average estimates of asymptotic variances for Generalized Rayleigh distribution,
n = 500, λ = 1, and different shape values.

α 0.4 0.8 1.5 2 3 10

LS α 0.000574 0.002881 0.013159 0.026752 0.073053 1.469135
LS λ 0.002392 0.001409 0.000994 0.000877 0.000756 0.000573

WLS α 0.000475 0.002322 0.010403 0.020908 0.056628 1.116500
WLS λ 0.001846 0.001121 0.000800 0.000705 0.000609 0.000458

GLS α 0.000424 0.002048 0.009025 0.018043 0.048449 0.937636
GLS λ 0.001543 0.000977 0.000705 0.000623 0.000537 0.000399

ML α 0.000422 0.002035 0.008956 0.017898 0.048000 0.927780
ML λ 0.001529 0.000970 0.000700 0.000619 0.000533 0.000396

Table 5. Average estimates and observed mean square errors (in parentheses) for Gener-
alized Rayleigh distribution, n = 30, λ = 1, and different shape values.

α 0.4 0.8 1.5 2 3 10

LS α 0.432893 0.860601 1.661423 2.254612 3.272273 13.484353
(0.013400) (0.091111) (0.359988) (0.834189) (1.540460) (130.513337)

LS λ 1.085505 1.061082 1.038937 1.033296 1.024192 1.023652
(0.058880) (0.031376) (0.019265) (0.018375) (0.012752) (0.010354)

CM α 0.447678 0.888288 1.706996 2.309987 3.349705 13.654724
(0.015275) (0.101462) (0.391572) (0.900606) (1.669251) (130.038509)

CM λ 1.061075 1.044495 1.026292 1.021452 1.013784 1.015902
(0.052854) (0.029071) (0.018233) (0.017443) (0.012341) (0.010005)

WLS α 0.398263 0.763321 1.463683 1.938331 2.810385 9.851301
(0.007721) (0.044918) (0.213034) (0.400237) (0.989017) (23.594586)

WLS λ 1.037518 1.013931 1.000923 0.995073 0.988803 0.987617
(0.040573) (0.023266) (0.015297) (0.013576) (0.011125) (0.008305)

AD α 0.429988 0.832667 1.585894 2.136508 3.110749 11.755775
(0.009185) (0.054399) (0.231389) (0.479958) (1.056463) (49.394037)

AD λ 1.063905 1.015844 1.002931 1.001582 0.997300 1.002945
(0.154878) (0.020692) (0.013617) (0.012704) (0.009536) (0.007615)

GLS α 0.392644 0.747209 1.447103 1.918643 2.776443 9.855416
(0.013907) (0.048398) (0.221782) (0.441611) (1.089020) (25.995926)

GLS λ 1.069338 1.031284 1.013151 1.004374 0.996518 0.995297
(0.041786) (0.022713) (0.014780) (0.013910) (0.011034) (0.008826)

ML α 0.443742 0.866889 1.682073 2.263892 3.322782 12.885790
(0.010477) (0.056855) (0.268958) (0.560751) (1.297896) (56.228781)

ML λ 1.065402 1.041235 1.027712 1.022436 1.017886 1.024105
(0.035947) (0.020530) (0.013476) (0.012486) (0.009637) (0.008165)
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Table 6. Average estimates and observed mean square errors (in parentheses) for Gener-
alized Rayleigh distribution, n = 500, λ = 1, and different shape values.

α 0.4 0.8 1.5 2 3 10

LS α 0.401072 0.804120 1.509713 2.006822 3.004879 10.234033
(0.000609) (0.002970) (0.012460) (0.026548) (0.070820) (1.696478)

LS λ 1.005191 1.004089 1.005009 1.001493 1.000323 1.003419
(0.002630) (0.001396) (0.000935) (0.000841) (0.000703) (0.000577)

CM α 0.401863 0.805580 1.512148 2.009860 3.008891 10.242140
(0.000613) (0.002994) (0.012554) (0.026676) (0.071049) (1.702099)

CM λ 1.003750 1.003114 1.004251 1.000808 0.999704 1.002931
(0.002611) (0.001387) (0.000928) (0.000839) (0.000703) (0.000574)

WLS α 0.399876 0.800722 1.504045 1.996725 2.989459 10.091798
(0.000491) (0.002344) (0.009690) (0.021148) (0.060599) (1.187263)

WLS λ 1.003179 1.002238 1.003779 1.000209 0.999024 1.001536
(0.002085) (0.001083) (0.000765) (0.000694) (0.000725) (0.000443)

AD α 0.401026 0.803076 1.508705 2.002868 3.003136 10.132350
(0.000498) (0.002378) (0.009846) (0.021437) (0.054144) (1.223646)

ADλ 1.001782 1.001422 1.003280 0.999769 0.999285 1.001464
(0.002078) (0.001083) (0.000761) (0.000696) (0.000562) (0.000448)

GLS α 0.398127 0.795783 1.488681 1.977198 2.955059 9.758585
(0.000440) (0.002399) (0.011740) (0.022673) (0.075353) (1.430501)

GLS λ 1.005308 1.001904 1.001571 0.998729 0.997061 0.996265
(0.001783) (0.001040) (0.000905) (0.000746) (0.000962) (0.000591)

ML α 0.402126 0.805212 1.515311 2.009295 3.025369 10.142795
(0.000441) (0.002091) (0.009122) (0.019694) (0.048308) (1.044092)

ML λ 1.004185 1.002522 1.004530 1.000894 1.001474 1.002106
(0.001752) (0.000934) (0.000743) (0.000639) (0.000514) (0.000388)

Table 7. Estimates and the corresponding values of the Kolmogorov-Smirnov goodness
of fit test statistic for the failure time data set and generalized Rayleigh distribution.

method α̂ λ̂ GOFKS

ML 1.200811 0.376297 0.060685
LS 1.380761 0.389711 0.049944

WLS 1.305006 0.381751 0.052284
GLS 1.379113 0.392855 0.045706
CM 1.388085 0.387328 0.056582
AD 1.362369 0.384189 0.055938
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Figure 1. Average estimates of asymptotic variance for θ̂LS , θ̂WLS and θ̂GLS relative to

θ̂ML variance (Exponential distribution, θ = 2).
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Figure 2. Observed bias and observed MSE relative to the observed maximum likelihood

MSE for exponential distribution, θ = 2.
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Figure 3. Average estimates of asymptotic variance relative to the maximum likelihood

variance for different shape values (Generalized Rayleigh distribution, λ = 1, n=500) for

LS, WLS and GLS estimation procedures.
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Figure 4. Average observed bias relative to the true parameter value for different shape

values (Generalized Rayleigh distribution, λ = 1, n=500) for LS, WLS, GLS and ML
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Figure 5. Average observed MSE relative to the true parameter value for different shape

values (Generalized Rayleigh distribution, λ = 1, n=500) for LS, WLS, GLS and ML

estimation procedures.


