ArticleOriginal scientific text

Title

On useful schema in survival analysis after heart attack

Authors 1

Affiliations

  1. Department of Differential Equations and Statistics, Faculty of Mathematics and Natural Sciences, University of Rzeszów, Pigonia 1, 35-959 Rzeszów, Poland

Abstract

Recent model of lifetime after a heart attack involves some integer coefficients. Our goal is to get these coefficients in simple way and transparent form. To this aim we construct a schema according to a rule which combines the ideas used in the Pascal triangle and the generalized Fibonacci and Lucas numbers

Keywords

lifetime after heart attack, distribution, Fibonacci number, Lucas number, Pascal triangle

Bibliography

  1. H. Belbachir and A. Benmezai, An alternative approach to Cigler's q-Lucas polynomials, Appl. Math. Computat. 226 (2014) 691-698. doi: 10.1016/j.amc.2013.10.009
  2. G.B. Diordjević, Generating functions of the incomplete generalized Fibonacci and generalized Lucas numbers, Fibonacci Quart. 39 (2004) 106-113.
  3. A. Dil and I. Mező, A symmetric algorithm for hyperharmonic and Fibonacci numbers, Appl. Math. Comput. 206 (2008) 942-951. doi: 10.1016/j.amc.2008.10.013
  4. M. El-Mikkawy and T. Sogabe, A new family of k-Fibonacci numbers, Appl. Math. Comput. 215 (2010) 4456-4461. doi: 10.1016/j.amc.2009.12.069
  5. X. Fu and X. Zhou, On matrices related with Fibonacci and Lucas numbers, Appl. Math. Comput. 200 (2008) 96-100. doi: 10.1016/j.amc.2007.10.060
  6. D. Garth, D. Mills and P. Mitchell, Polynomials generated by the Fibonacci sequence, J. Integer. Seq. 10 (2007), Article 07.6.8.
  7. H.H. Gulec, N. Taskara and K. Uslu, A new approach to generalized Fibonacci and Lucas numbers with binomial coefficients, Appl. Math. Comput. 230 (2013) 482-486. doi: 10.1016/j.amc.2013.05.043
  8. J.M. Gutiérrez, M.A. Hernández, P.J. Miana and N. Romero, New identities in the Catalan triangle, J. Math. Anal. Appl. 341 (2008) 52-61. doi: 10.1016/j.jmaa.2007.09.073
  9. P. Hao and S. Zhi-wei, A combinatorial identity with application to Catalan numbers, Discrete Math. 306 (2006) 1921-1940. doi: 10.1016/j.disc.2006.03.050
  10. V.E. Hoggat Jr., Fibonacci and Lucas Numbers, Houghton Miffin (Boston, MA, 1969).
  11. H. Hosoya, Fibonacci triangle, Fibonacci Quart. 14 (1976) 173-178.
  12. B.D. Jones, Comprehensive Medical Terminology, Third Ed. Delmar Publishers (Albany NY, 2008).
  13. S. Kitaev and J. Liese, Harmonic numbers, Catalan's triangle and mesh patterns, Discrete Math. 313 (2013) 1515-1531. doi: 10.1016/j.disc.2013.03.017
  14. E.G. Kocer and N. Touglu, The Binet formulas for the Pell-Lucas p-numbers, Ars Combinatoria 85 (2007) 3-18.
  15. T. Koshy, Fibonacci and Lucas Numbers with Applications (Wiley-Interscience, New York, 2001). doi: 10.1002/9781118033067
  16. T. Koshy, Fibonacci, Lucas, and Pell numbers, and Pascal's triangle, Math. Spectrum 43 (2011) 125-132.
  17. H. Kwong, Two determinants with Fibonacci ad Lucas entries, Appl. Math. Comput. 194 (2007) 568-571. doi: 10.1016/j.amc.2007.04.027
  18. S.-M. Ma, Identities involving generalized Fibonacci-type polynomials, Appl. Math. Comput. 217 (2011) 9297-9301. doi: 10.1016/j.amc.2011.04.012
  19. L. Niven, H. Zuckerman and H. Montgomery, An Introduction to the Theory of Numbers, Fifth Ed. (Wiley, New York, 1991).
  20. J. Petronilho, Generalized Fibonacci sequences via orthogonal polynomials, Appl. Mat. Comput. 218 (2012) 9819-9824. doi: 10.1016/j.amc.2012.03.053
  21. L.W. Shapiro, A Catalan triangle, Discrete Math. 14 (1976) 83-90. doi: 10.1016/0012-365X(76)90009-1
  22. N. Sloane, On-Line Encyclopedia of Integer Sequences (OEIS), http;//oeis.org.
  23. S. Stanimirović, Some identities on Catalan numbers and hypergeometric functions via Catalan matrix power, Appl. Math. Comput. 217 (2011) 9122-9132. doi: 10.1016/j.amc.2011.03.138
  24. S. Stanimirović, P. Stanimirović, M. Miladinović and A. Ilić, Catalan matrix and related combinatorial identities, Appl. Math. Comput. 215 (2009) 796-805. doi: 10.1016/j.amc.2009.06.003
  25. C. Stępniak, On distribution of waiting time for the first failure followed by a limited length success run, Appl. Math. (Warsaw) (2013) 421-430. doi: 10.4064/am40-4-3
  26. N. Tuglu, E.G. Kocer and A. Stakhov, Bivariate fibonacci like p-polynomials, Appl. Math. Comput. 217 (2011) 10239-10246. doi: 10.1016/j.amc.2011.05.022
  27. S. Vajda, Fibonacci and Lucas Numbers and the Golden Section, Ellis Horwood (Chichester 1989).
  28. N.N. Vorobyov, Fibonacci Numbers, Publishing House 'Nauka', Moscow, 1961 (in Russian).
  29. A. Włoch, Some identities for the generalized Fibonacci numbers and the generalized Lucas numbers, Appl. Math. Comput. 219 (2013) 5564-5568. doi: 10.1016/j.amc.2012.11.030
  30. O. Yayenie, A note on generalized Fibonacci sequences, Appl. Math. Comput. 217 (2011) 5603-5611. doi: 10.1016/j.amc.2010.12.038
Pages:
63-69
Main language of publication
English
Received
2014-06-19
Published
2014
Exact and natural sciences