ArticleOriginal scientific text

Title

A learning algorithm combining functional discriminant coordinates and functional principal components

Authors 1, 1, 2

Affiliations

  1. Adam Mickiewicz University, Faculty of Mathematics and Computer Science, Umultowska 87, 61-614 Poznań, Poland
  2. President Stanisław Wojciechowski Higher Vocational State School in Kalisz, Faculty of Management, Nowy Świat 4, 62-800 Kalisz, Poland

Abstract

A new type of discriminant space for functional data is presented, combining the advantages of a functional discriminant coordinate space and a functional principal component space. In order to provide a comprehensive comparison, we conducted a set of experiments, testing effectiveness on 35 functional data sets (time series). Experiments show that constructed combined space provides a higher quality of classification of LDA method compared with component spaces.

Keywords

functional principal components, functional discriminant coordinates

Bibliography

  1. G. Bergmann and G. Hommel, Improvements of general multiple test procedures for redundant systems of hypotheses, in: Multiple Hypotheses Testing, P. Bauer, G. Hommel, E. Sonnemann (Ed.), Springer (1988) 110-115. doi: 10.1007/978-3-642-52307-6_8
  2. D. Cozzolino, E. Restaino and A. Fassio, Discrimination of yerba mate (ilex paraguayensis st. hil.) samples according to their geographical origin by means of near infrared spectroscopy and multivariate analysis, Sensing and Instrumentation for Food Quality and Safety 4 (2002) 67-72. doi: 10.1007/s11694-010-9096-y
  3. R.A. Fisher, The use of multiple measurements in taxonomic problem, Annals of Eugenics 7 (1936) 179-188. doi: 10.1111/j.1469-1809.1936.tb02137.x
  4. S. Garcia and F. Herrera, An extension on 'statistical comparisons of classifiers over multiple data sets' for all pairwise comparisons, Journal of Machine Learning Research 9 (2008) 2677-2694.
  5. T. Górecki and M. Krzyśko, Functional Principal Components Analysis, in: Data analysis methods and its applications, J. Pociecha, R. Decker (Ed.), C.H. Beck (2012) 71-87.
  6. T. Górecki, M. Krzyśko and Ł. Waszak, Functional discriminant coordinates, Communication in Statistics - Theory and Methods 43 (5) (2014) 1013-1025. doi: 10.1080/03610926.2013.828074
  7. H. Hotelling, Analysis of a complex of statistical variables into principal components, Journal of Educational Psychology 24 (1933) 417-441, 498-520. doi: 10.1037/h0071325
  8. R. Iman and J. Davenport, Approximations of the critical region of the freidman statistic, Communications in Statistics - Theory and Methods 9 (6) (1980) 571-595. doi: 10.1080/03610928008827904
  9. E. Keogh, Q. Zhu, B. Hu, Y. Hao, X. Xi, L. Wei and C.A. Ratanamahatana, The UCR Time Series Classification/Clustering, Homepage, 2011. http://www.cs.ucr.edu/~eamonn/time_series_data/.
  10. N.K. Kwak, S.H. Kim, C.W. Lee and T.S. Choi, An application of linear programming discriminant analysis to classifying and predicting the symptomatic status of hiv/aids patients, Journal of Medical Systems 26 (5) (2002) 427-438.
  11. T.S. Lim, W.Y. Loh and Y.S. Shih, A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms, Machine Learning 40 (3) (2000) 203-228. doi: 10.1023/A:1007608224229
  12. J.O. Ramsay and B.W. Silverman, Functional Data Analysis, Second Edition (Springer, 2005). doi: 10.1007/b98888
  13. G.A.F. Seber, Multivariate Observations (Wiley, 1984). doi: 10.1002/9780470316641
  14. G. Shmueli, To explain or to predict? Statistical Science 25 (3) (2010) 289-310. doi: 10.1214/10-STS330
  15. F. Song, D. Zhang, Q. Chen and J. Wang, Face recognition based on a novel linear discriminant criterion, Pattern Analysis and Applications 10 (2007) 165-174. doi: 10.1007/s10044-006-0057-3
Pages:
127-141
Main language of publication
English
Received
2014-09-10
Accepted
2014-09-16
Published
2014
Exact and natural sciences