PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 34 | 1-2 | 127-141
Tytuł artykułu

A learning algorithm combining functional discriminant coordinates and functional principal components

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new type of discriminant space for functional data is presented, combining the advantages of a functional discriminant coordinate space and a functional principal component space. In order to provide a comprehensive comparison, we conducted a set of experiments, testing effectiveness on 35 functional data sets (time series). Experiments show that constructed combined space provides a higher quality of classification of LDA method compared with component spaces.
Twórcy
  • Adam Mickiewicz University, Faculty of Mathematics and Computer Science, Umultowska 87, 61-614 Poznań, Poland
  • Adam Mickiewicz University, Faculty of Mathematics and Computer Science, Umultowska 87, 61-614 Poznań, Poland
  • President Stanisław Wojciechowski Higher Vocational State School in Kalisz, Faculty of Management, Nowy Świat 4, 62-800 Kalisz, Poland
Bibliografia
  • [1] G. Bergmann and G. Hommel, Improvements of general multiple test procedures for redundant systems of hypotheses, in: Multiple Hypotheses Testing, P. Bauer, G. Hommel, E. Sonnemann (Ed.), Springer (1988) 110-115. doi: 10.1007/978-3-642-52307-6_8
  • [2] D. Cozzolino, E. Restaino and A. Fassio, Discrimination of yerba mate (ilex paraguayensis st. hil.) samples according to their geographical origin by means of near infrared spectroscopy and multivariate analysis, Sensing and Instrumentation for Food Quality and Safety 4 (2002) 67-72. doi: 10.1007/s11694-010-9096-y
  • [3] R.A. Fisher, The use of multiple measurements in taxonomic problem, Annals of Eugenics 7 (1936) 179-188. doi: 10.1111/j.1469-1809.1936.tb02137.x
  • [4] S. Garcia and F. Herrera, An extension on 'statistical comparisons of classifiers over multiple data sets' for all pairwise comparisons, Journal of Machine Learning Research 9 (2008) 2677-2694.
  • [5] T. Górecki and M. Krzyśko, Functional Principal Components Analysis, in: Data analysis methods and its applications, J. Pociecha, R. Decker (Ed.), C.H. Beck (2012) 71-87.
  • [6] T. Górecki, M. Krzyśko and Ł. Waszak, Functional discriminant coordinates, Communication in Statistics - Theory and Methods 43 (5) (2014) 1013-1025. doi: 10.1080/03610926.2013.828074
  • [7] H. Hotelling, Analysis of a complex of statistical variables into principal components, Journal of Educational Psychology 24 (1933) 417-441, 498-520. doi: 10.1037/h0071325
  • [8] R. Iman and J. Davenport, Approximations of the critical region of the freidman statistic, Communications in Statistics - Theory and Methods 9 (6) (1980) 571-595. doi: 10.1080/03610928008827904
  • [9] E. Keogh, Q. Zhu, B. Hu, Y. Hao, X. Xi, L. Wei and C.A. Ratanamahatana, The UCR Time Series Classification/Clustering, Homepage, 2011. http://www.cs.ucr.edu/~eamonn/time_series_data/.
  • [10] N.K. Kwak, S.H. Kim, C.W. Lee and T.S. Choi, An application of linear programming discriminant analysis to classifying and predicting the symptomatic status of hiv/aids patients, Journal of Medical Systems 26 (5) (2002) 427-438.
  • [11] T.S. Lim, W.Y. Loh and Y.S. Shih, A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms, Machine Learning 40 (3) (2000) 203-228. doi: 10.1023/A:1007608224229
  • [12] J.O. Ramsay and B.W. Silverman, Functional Data Analysis, Second Edition (Springer, 2005). doi: 10.1007/b98888
  • [13] G.A.F. Seber, Multivariate Observations (Wiley, 1984). doi: 10.1002/9780470316641
  • [14] G. Shmueli, To explain or to predict? Statistical Science 25 (3) (2010) 289-310. doi: 10.1214/10-STS330
  • [15] F. Song, D. Zhang, Q. Chen and J. Wang, Face recognition based on a novel linear discriminant criterion, Pattern Analysis and Applications 10 (2007) 165-174. doi: 10.1007/s10044-006-0057-3
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1163
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.