ArticleOriginal scientific text
Title
Global approximations for the γ-order Lognormal distribution
Authors 1
Affiliations
- Technological Educational Institute of Athens, 12210 Egaleo, Athens, Greece
Abstract
A generalized form of the usual Lognormal distribution, denoted with , is introduced through the γ-order Normal distribution , with its p.d.f. defined into (0,+∞). The study of the c.d.f. of is focused on a heuristic method that provides global approximations with two anchor points, at zero and at infinity. Also evaluations are provided while certain bounds are obtained.
Keywords
cumulative distribution function, γ-order Lognormal distribution, global Padé approximation
Bibliography
- H. Alzer, On some inequalities for the incomplete gamma function, Mathematics of Computation 66 (1997) 771-778. doi: 10.1090/S0025-5718-97-00814-4.
- F. Bernardeau and L. Kofman, Properties of the cosmological density distribution function, Monthly Notices of the Royal Astrophys. J. 443 (1995) 479-498.
- P. Blasi, S. Burles and A.V. Olinto, Cosmological magnetic field limits in an inhomogeneous Universe, The Astrophysical Journal Letters 514 (1999) L79-L82. doi: 10.1086/311958.
- E.L. Crow and K. Shimizu, Lognormal Distributions - Theory and Applications (M. Dekker, New York & Basel, 1998).
- J. Gathen and J. Gerhard, Modern Computer Algebra (Cambridge University Press, 1993).
- I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products (Elsevier, 2007).
- C.P. Kitsos and N.K. Tavoularis, Logarithmic Sobolev inequalities for information measures, IEEE Trans. Inform. Theory 55 (2009) 2554-2561. doi: 10.1109/TIT.2009.2018179.
- C.P. Kitsos and T.L. Toulias, New information measures for the generalized normal distribution, Information 1 (2010) 13-27. doi: 10.3390/info1010013.
- C.P. Kitsos, T.L. Toulias and C.P. Trandafir, On the multivariate γ-ordered normal distribution, Far East J. of Theoretical Statistics 38 (2012) 49-73.
- T.J. Kozubowski and K. Podgórski, Asymmetric Laplace laws and modeling financial data, Math. Comput. Modelling 34 (2001) 1003-1021. doi: 10.1016/S0895-7177(01)00114-5.
- T.J. Kozubowski and K. Podgórski, Asymmetric Laplace distributions, Math. Sci. 25 (2000) 37-46.
- C.G. Small, Expansions and Asymptotics for Statistics (Chapman & Hall, 2010). doi: 10.1201/9781420011029.
- T.L. Toulias and C.P. Kitsos, On the generalized Lognormal distribution, J. Prob. and Stat. (2013) 1-16. doi: 10.1155/2013/432642.