ArticleOriginal scientific text

Title

Small perturbations with large effects on value-at-risk

Authors 1, 2, 3, 1

Affiliations

  1. Departamento de Matemática FCT/UNL e CMA/FCT/UNL, Quinta da Torre, 2829-516 Caparica, Portugal
  2. Colégio Militar Largo da Luz, 1600-498 Lisboa, Portugal
  3. Centro de Matemática e Aplicações da Universidade Nova de Lisboa (CMA/FCT/UNL), Quinta da Torre, 2829-516 Caparica, Portugal

Abstract

We show that in the delta-normal model there exist perturbations of the Gaussian multivariate distribution of the returns of a portfolio such that the initial marginal distributions of the returns are statistically undistinguishable from the perturbed ones and such that the perturbed V@R is close to the worst possible V@R which, under some reasonable assumptions, is the sum of the V@Rs of each of the portfolio assets.

Keywords

Gaussian perturbation, value-at-risk, delta-normal model

Bibliography

  1. C. Alexander, Value-at-Risk Models (John Wiley & Sons, 2008).
  2. P. Best, Implementing Value at Risk (John Wiley & Sons, 1998).
  3. M. Choudry, An Introduction to Value-at-Risk, fourth edition (John Wiley & Sons, 2006).
  4. L. Dimas, Sobre a Influência de Pequenas Perturbações no Cálculo do 'Value-at-Risk' de uma Carteira de Activos, Master of Science Dissertation, Text in Portuguese (Universidade Nova de Lisboa, 2014).
  5. P. Embrechts, J. Nešlehová and M. Wüthrich, Additivity properties for value-at-risk under Archimedean dependence and heavy-tailedness, Insurance Math. Econom. 44 (2) (2099) 164-169. doi: 10.1016/j.insmatheco.2005.01.006
  6. P. Embrechts, A. Höing and G. Puccetti, Worst VaR scenarios, Insurance Math. Econom. 37 (1) (2005) 115-134. doi: 10.1016/j.insmatheco.2005.01.006
  7. P. Embrechts and A. Hing, Extreme VaR scenarios in higher dimensions, Extremes 9 (3) (2006) 177-192. doi: 10.1007/s10687-006-0027-6
  8. C.G. Esseen, Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law, Acta Math. 77 (1945) 1-125. doi: 10.1007/BF02392223
  9. W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II (John Wiley & Sons, 1971).
  10. P. Jorion, Value at Risk, third edition, McGraw-Hill (New York, 2007).
  11. R. Kaas, Roger J.A. Laeven and Roger B. Nelsen, Worst VaR scenarios with given marginals and measures of association, Insurance Math. Econom. 44 (2) (2009) 146-158. doi: 10.1016/j.insmatheco.2008.12.004
  12. Roger J.A. Laeven, Worst VaR scenarios: A remark, Insurance Math. Econom. 44 (2) (2009) 159-163. doi: 10.1016/j.insmatheco.2008.10.006
  13. A. McNeil, and R. Frey and P. Embrechts, Quantitative Risk Management (Princeton University Press, 2005).
  14. M. Mesfioui and J.F. Quessy, Bounds on the value-at-risk for the sum of possibly dependent risks, Insurance Math. Econom. 37 (1) (2005) 135-151. doi: 10.1016/j.insmatheco.2005.03.002
  15. W.R. Pestman, Mathematical statistics (Walter de Gruyter & Co, Berlin, 1998). doi: 10.1515/9783110208535
  16. R. Rebonato and P. Jäckel, The most general methodology to create a valid correlation matrix for risk management and option pricing purposes, preprint.
  17. K. Schöttle and R. Werner, Improving the most general methodology to create a valid correlation matrix, in: Risk Analysis IV, Wessex Institute of Technology Press.
  18. A.N. Shiryaev, Probability (Springer-Verlag, 1996). doi: 10.1007/978-1-4757-2539-1
Pages:
151-169
Main language of publication
English
Received
2013-08-14
Accepted
2013-11-15
Published
2013
Exact and natural sciences