ArticleOriginal scientific text
Title
On the optimal continuous experimental design problem
Authors 1
Affiliations
- Technological Educational Institute of Athens Department of Mathematics 12210 Egaleo, Athens, Greece
Abstract
The target of this paper is to provide a compact review of the Optimal Experimental Design, the continuous case. Therefore we are referring to the general nonlinear problem in comparison to the linear one.
Keywords
nonlinear experimental design, static, sequential design
Bibliography
- K.M. Abdelbasit and R.L. Plackett, Experimental design for binary data, JASA 78 (1983) 90-98. doi: 10.1080/01621459.1983.10477936.
- A.C. Atkinson and A.N. Donev, Optimum Experimental Designs (Clarendon Press, Oxford, 1992).
- D.M. Bates and D.G. Watts, Relative curvature measures of nonlinearity, JRSSB 42 (1980) 1-25.
- E.M.L. Beale, Confidence regions in non-linear estimation, JRSSB 22 (1960) 41-88.
- G. Elfving, Optimum allocation in linear regression theory, Ann. Math. Stat. 23 (1952) 255-262. doi: 10.1214/aoms/1177729442.
- V.V. Fedorov, Theory of Optimal Experiments (Academic Press, 1972).
- R.A. Fisher, On the mathematical foundation of theoretical statistics, Phil. Trans. Roy. Soc. London (Ser. A) 22 (1922) 309-368.
- I. Ford, C.P. Kitsos and D.M. Titterington, Recent advances in nonlinear experimental design, Technometrics 31 (1989) 49-60. doi: 10.1080/00401706.1989.10488475.
- I. Ford, D.M. Titterington and C.F.J. Wu, Inference and sequential design, Biometrika 72 (1985) 545-551. doi: 10.1093/biomet/72.3.545.
- F.E. Fornius, Optimal Design of Experiments for the Quadratic Logistic Model (PhD Thesis, Stockholm University, Sweden, 2008).
- D.C Hamilton, D.G. Watts and D.M. Bates, Accounting for intrinsic nonlinearity in nonlinear regression parameter inference regions, Ann. Stat. 10 (1982) 386-393. doi: 10.1214/aos/1176345780.
- P.D.H. Hill, D-optimal designs for partially nonlinear regression models, Technometrics 22 (1980) 275-276. doi: 10.1080/00401706.1980.10486145.
- P.D.H. Hill, Optimal Experimental Design for Model Discrimination (PhD Thesis, University of Glasgow, UK, 1976).
- S. Karlin and W.J. Studden, Optimal experimental designs, Ann. Math. Stat. 37 (1966) 783-815. doi: 10.1214/aoms/1177699361.
- A.I. Khuri, A note on D-optimal designs for partially nonlinear regression models, Technometrics 26 (1984) 59-61.
- J. Kiefer, General equivalence theory for optimum designs (approximate theory), Ann. Stat. 2 (1974) 849-879. doi: 10.1214/aos/1176342810.
- J. Kiefer and J. Wolfowitz, The equivalence of two extreme problems, Canadian J. Math. 12 (1960) 363-366. doi: 10.4153/CJM-1960-030-4.
- C.P. Kitsos, Invariant canonical form for the multiple logistic regression, Math. in Eng. Science and Aerospace (MESA) 2(3) (2011) 267-275.
- C.P. Kitsos, Design aspects for the Michaelis-Menten model, Biometrical Letters 38 (2001) 53-66.
- C.P. Kitsos, Fully sequential procedures in nonlinear design problems, Comp. Stat. and Data Analysis 8 (1989) 13-19. doi: 10.1016/0167-9473(89)90061-3.
- C.P. Kitsos, Design and Inference in Nonlinear Problems (PhD Thesis, University of Glasgow, UK, 1986).
- C.P. Kitsos and K.G. Kolovos, An optimal calibration design for pH meters, Instrumentation Science and Technology 38(6) (2010) 436-447. doi: 10.1080/10739149.2010.514158.
- E. Lauter, A method of designing experiments for nonlinear models, Math. Operationsforsch U. Stat. 5 (1974) 697-708.
- F. Pukeisheim and D.M. Titterington, General differential and Lagrangian theory for optimal experiment design, Ann. Stat. 11 (1983) 1060-1068.
- R. Sibson, Discussion of paper by H.P. Wynn, JRSSB 34 (1972) 181-183.
- S.D. Silvey, Discussion of paper by H.P. Wynn, JRSSB 34 (1972) 174-175.
- S.D. Silvey, Optimal Design (Chapman and Hall, 1980). doi: 10.1007/978-94-009-5912-5.
- S.D. Silvey and D.M. Tittertington, A geometric approach to optimal design theory, Biometrika 60 (1973) 21-32. doi: 10.1093/biomet/60.1.21.
- K. Smith, On the standard deviation of adjusted and interpolated values of an observed polynomial function and its constants and the guidance they give towards a proper choice of the distribution of observations, Biometrika 12 (1918) 1-85.
- M. Stone and J.A. Morris (1985), Explanatory studies in non-sequential non-local non-linear design, J. of Statistical Planning and Inference 12 (1985) 1-9. doi: 10.1016/0378-3758(85)90048-5.
- D.M. Titterington, Aspects of optimal design in dynamic systems, Technometrics 22 (1980) 287-299. doi: 10.1080/00401706.1980.10486160.
- D.M. Titterington, Optimal design: Some geometrical aspects of D-optimality, Biometrika 62 (1975) 313-320.
- L.V. White, An extension to the general equivalence theorem for nonlinear models, Biometrika 60 (1973) 345-348. doi: 10.1093/biomet/60.2.345.
- C.F.J. Wu, Asymptotic theory of nonlinear least squares estimates, Ann. Stat. 9 (1981) 501-513. doi: 10.1214/aos/1176345455.
- C.F.J. Wu and H.P. Wynn, The convergence of general step-length algorithms for regular optimum design criteria, Ann. Stat. 6 (1978) 1273-1285. doi: 10.1214/aos/1176344373.
- V. Zarikas, V. Gikas and C.P. Kitsos, Evaluation of the optimal design cosinor model for enhancing the potential of robotic theodolite kinematic observation, Measurement 43(10) (2010) 1416-1424. doi: 10.1016/j.measurement.2010.08.006.