PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 31 | 1-2 | 59-70
Tytuł artykułu

On the optimal continuous experimental design problem

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The target of this paper is to provide a compact review of the Optimal Experimental Design, the continuous case. Therefore we are referring to the general nonlinear problem in comparison to the linear one.
Twórcy
  • Technological Educational Institute of Athens Department of Mathematics 12210 Egaleo, Athens, Greece
Bibliografia
  • [1] K.M. Abdelbasit and R.L. Plackett, Experimental design for binary data, JASA 78 (1983) 90-98. doi: 10.1080/01621459.1983.10477936.
  • [2] A.C. Atkinson and A.N. Donev, Optimum Experimental Designs (Clarendon Press, Oxford, 1992).
  • [3] D.M. Bates and D.G. Watts, Relative curvature measures of nonlinearity, JRSSB 42 (1980) 1-25.
  • [4] E.M.L. Beale, Confidence regions in non-linear estimation, JRSSB 22 (1960) 41-88.
  • [5] G. Elfving, Optimum allocation in linear regression theory, Ann. Math. Stat. 23 (1952) 255-262. doi: 10.1214/aoms/1177729442.
  • [6] V.V. Fedorov, Theory of Optimal Experiments (Academic Press, 1972).
  • [7] R.A. Fisher, On the mathematical foundation of theoretical statistics, Phil. Trans. Roy. Soc. London (Ser. A) 22 (1922) 309-368.
  • [8] I. Ford, C.P. Kitsos and D.M. Titterington, Recent advances in nonlinear experimental design, Technometrics 31 (1989) 49-60. doi: 10.1080/00401706.1989.10488475.
  • [9] I. Ford, D.M. Titterington and C.F.J. Wu, Inference and sequential design, Biometrika 72 (1985) 545-551. doi: 10.1093/biomet/72.3.545.
  • [10] F.E. Fornius, Optimal Design of Experiments for the Quadratic Logistic Model (PhD Thesis, Stockholm University, Sweden, 2008).
  • [11] D.C Hamilton, D.G. Watts and D.M. Bates, Accounting for intrinsic nonlinearity in nonlinear regression parameter inference regions, Ann. Stat. 10 (1982) 386-393. doi: 10.1214/aos/1176345780.
  • [12] P.D.H. Hill, D-optimal designs for partially nonlinear regression models, Technometrics 22 (1980) 275-276. doi: 10.1080/00401706.1980.10486145.
  • [13] P.D.H. Hill, Optimal Experimental Design for Model Discrimination (PhD Thesis, University of Glasgow, UK, 1976).
  • [14] S. Karlin and W.J. Studden, Optimal experimental designs, Ann. Math. Stat. 37 (1966) 783-815. doi: 10.1214/aoms/1177699361.
  • [15] A.I. Khuri, A note on D-optimal designs for partially nonlinear regression models, Technometrics 26 (1984) 59-61.
  • [16] J. Kiefer, General equivalence theory for optimum designs (approximate theory), Ann. Stat. 2 (1974) 849-879. doi: 10.1214/aos/1176342810.
  • [17] J. Kiefer and J. Wolfowitz, The equivalence of two extreme problems, Canadian J. Math. 12 (1960) 363-366. doi: 10.4153/CJM-1960-030-4.
  • [18] C.P. Kitsos, Invariant canonical form for the multiple logistic regression, Math. in Eng. Science and Aerospace (MESA) 2(3) (2011) 267-275.
  • [19] C.P. Kitsos, Design aspects for the Michaelis-Menten model, Biometrical Letters 38 (2001) 53-66.
  • [20] C.P. Kitsos, Fully sequential procedures in nonlinear design problems, Comp. Stat. and Data Analysis 8 (1989) 13-19. doi: 10.1016/0167-9473(89)90061-3.
  • [21] C.P. Kitsos, Design and Inference in Nonlinear Problems (PhD Thesis, University of Glasgow, UK, 1986).
  • [22] C.P. Kitsos and K.G. Kolovos, An optimal calibration design for pH meters, Instrumentation Science and Technology 38(6) (2010) 436-447. doi: 10.1080/10739149.2010.514158.
  • [23] E. Lauter, A method of designing experiments for nonlinear models, Math. Operationsforsch U. Stat. 5 (1974) 697-708.
  • [24] F. Pukeisheim and D.M. Titterington, General differential and Lagrangian theory for optimal experiment design, Ann. Stat. 11 (1983) 1060-1068.
  • [25] R. Sibson, Discussion of paper by H.P. Wynn, JRSSB 34 (1972) 181-183.
  • [26] S.D. Silvey, Discussion of paper by H.P. Wynn, JRSSB 34 (1972) 174-175.
  • [27] S.D. Silvey, Optimal Design (Chapman and Hall, 1980). doi: 10.1007/978-94-009-5912-5.
  • [28] S.D. Silvey and D.M. Tittertington, A geometric approach to optimal design theory, Biometrika 60 (1973) 21-32. doi: 10.1093/biomet/60.1.21.
  • [29] K. Smith, On the standard deviation of adjusted and interpolated values of an observed polynomial function and its constants and the guidance they give towards a proper choice of the distribution of observations, Biometrika 12 (1918) 1-85.
  • [30] M. Stone and J.A. Morris (1985), Explanatory studies in non-sequential non-local non-linear design, J. of Statistical Planning and Inference 12 (1985) 1-9. doi: 10.1016/0378-3758(85)90048-5.
  • [31] D.M. Titterington, Aspects of optimal design in dynamic systems, Technometrics 22 (1980) 287-299. doi: 10.1080/00401706.1980.10486160.
  • [32] D.M. Titterington, Optimal design: Some geometrical aspects of D-optimality, Biometrika 62 (1975) 313-320.
  • [33] L.V. White, An extension to the general equivalence theorem for nonlinear models, Biometrika 60 (1973) 345-348. doi: 10.1093/biomet/60.2.345.
  • [34] C.F.J. Wu, Asymptotic theory of nonlinear least squares estimates, Ann. Stat. 9 (1981) 501-513. doi: 10.1214/aos/1176345455.
  • [35] C.F.J. Wu and H.P. Wynn, The convergence of general step-length algorithms for regular optimum design criteria, Ann. Stat. 6 (1978) 1273-1285. doi: 10.1214/aos/1176344373.
  • [36] V. Zarikas, V. Gikas and C.P. Kitsos, Evaluation of the optimal design cosinor model for enhancing the potential of robotic theodolite kinematic observation, Measurement 43(10) (2010) 1416-1424. doi: 10.1016/j.measurement.2010.08.006.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1136
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.