Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 30 | 1 | 35-51
Tytuł artykułu

Comparison at optimal levels of classical tail index estimators: a challenge for reduced-bias estimation?

Treść / Zawartość
Warianty tytułu
Języki publikacji
In this article, we begin with an asymptotic comparison at optimal levels of the so-called "maximum likelihood" (ML) extreme value index estimator, based on the excesses over a high random threshold, denoted PORT-ML, with PORT standing for peaks over random thresholds, with a similar ML estimator, denoted PORT-MP, with MP standing for modified-Pareto. The PORT-MP estimator is based on the same excesses, but with a trial of accommodation of bias on the Generalized Pareto model underlying those excesses. We next compare the behaviour of these ML implicit estimators with the equivalent behaviour of a few explicit tail index estimators, the Hill, the moment, the generalized Hill and the mixed moment. As expected, none of the estimators can always dominate the alternatives, even when we include second-order MVRB tail index estimators, with MVRB standing for minimum-variance reduced-bias. However, the asymptotic performance of the MVRB estimators is quite interesting and provides a challenge for a further study of these MVRB estimators at optimal levels.
  • DEIO and CEAUL, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
  • Instituto Politécnico de Tomar and CEAUL
  • [1] P. Araújo Santos, M.I. Fraga Alves and M.I. Gomes, Peaks over random threshold methodology for tail index and quantile estimation, Revstat 4 (3) (2006), 227-247.
  • [2] J. Beirlant, G. Dierckx and A. Guillou, Estimation of the extreme-value index and generalized quantile plots, Bernoulli 11 (6) (2005), 949-970.
  • [3] J. Beirlant, P. Vynckier and J.L. Teugels, Excess functions and estimation of the extreme-value index, Bernoulli 2 (1996), 293-318.
  • [4] N.H. Bingham, C.M. Goldie and J.L. Teugels, Regular Variation, Cambridge Univ. Press 1987.
  • [5] F. Caeiro, M.I. Gomes and D.D. Pestana, Direct reduction of bias of the classical Hill estimator, Revstat 3 (2) (2005), 113-136.
  • [6] A. Davison, Modeling excesses over high threshold with an application, In J. Tiago de Oliveira ed., Statistical Extremes and Applications, D. Reidel (1984), 461-482.
  • [7] A. Dekkers, J. Einmahl and L. de Haan, A moment estimator for the index of an extreme-value distribution, Annals of Statistics 17 (1989), 1833-1855.
  • [8] A. Dekkers and L. de Haan, Optimal sample fraction in extreme value estimation, J. Multivariate Analysis 47 (2) (1993), 173-195.
  • [9] H. Drees, A. Ferreira and L. de Haan, On maximum likelihood estimation of the extreme value index, Ann. Appl. Probab. 14 (2004), 1179-1201.
  • [10] M.I. Fraga Alves, M.I. Gomes and L. de Haan, A new class of semi-parametric estimators of the second order parameter, Portugaliae Mathematica 60 (2) (2003), 193-214.
  • [11] M.I. Fraga Alves, M.I. Gomes, L. de Haan and C. Neves, The mixed moment estimator and location invariant alternatives, Extremes, 12 (2009), 149-185.
  • [12] J. Geluk and L. de Haan, Regular Variation, Extensions and Tauberian Theorems, CWI Tract 40, Center for Mathematics and Computer Science, Amsterdam, Netherlands 1987.
  • [13] B.V. Gnedenko, Sur la distribution limite du terme maximum d'une série aléatoire, Ann. Math. 44 (1943), 423-453.
  • [14] M.I. Gomes, M.I. Fraga Alves, and P.A. Santos, PORT Hill and Moment Estimators for Heavy-Tailed Models, Commun. Statist. - Simul. & Comput. 37 (2008a), 1281-1306.
  • [15] M.I. Gomes, L. de Haan and L. Henriques-Rodrigues, Tail index estimation through accommodation of bias in the weighted log-excesses, J. Royal Statistical Society B70 (1) (2008b), 31-52.
  • [16] M.I. Gomes and L. Henriques-Rodrigues, Tail index estimation for heavy tails: accommodation of bias in the excesses over a high threshold, Extremes, 11 (3) (2008), 303-328.
  • [17] M.I. Gomes and M.J. Martins, Alternatives to Hill's estimator - asymptotic versus finite sample behaviour, J. Statist. Planning and Inference 93 (2001), 161-180.
  • [18] M.I. Gomes and M.J. Martins, 'Asymptotically unbiased' estimators of the tail index based on external estimation of the second order parameter, Extremes 5 (1) (2002), 5-31.
  • [19] M.I. Gomes, C. Miranda and H. Pereira, Revisiting the role of the Jackknife methodology in the estimation of a positive extreme value index, Comm. in Statistics - Theory and Methods 34 (2005), 1-20.
  • [20] M.I. Gomes, C. Miranda and C. Viseu, Reduced bias extreme value index estimation and the Jackknife methodology, Statistica Neerlandica 61 (2) (2007) 243-270.
  • [21] M.I. Gomes and C. Neves, Asymptotic comparison of the mixed moment and classical extreme value index estimators, Statistics and Probability Letters 78 (6) (2008), 643-653.
  • [22] M.I. Gomes and D. Pestana, A sturdy reduced-bias extreme quantile (VaR) estimator, J. American Statistical Association 102 (477) (2007), 280-292.
  • [23] L. de Haan, On Regular Variation and its Application to the Weak Convergence of Sample Extremes, Mathematical Centre Tract 32, Amsterdam 1970.
  • [24] L. de Haan and A. Ferreira, Extreme Value Theory: an Introduction, Springer Science+Business Media, LLC, New York 2006.
  • [25] L. de Haan and L. Peng, Comparison of tail index estimators, Statistica Neerlandica 52 (1998), 60-70.
  • [26] P. Hall and A.H. Welsh, Adaptive estimates of parameters of regular variation, Ann. Statist. 13 (1985), 331-341.
  • [27] B.M. Hill, A simple general approach to inference about the tail of a distribution, Ann. Statist. 3 (1975), 1163-1174.
  • [28] V. Pareto, Oeuvres Complétes, Geneva, Droz. 1965.
  • [29] R.L. Smith, Estimating tails of probability distributions, Ann. Statist. 15 (3) (1987), 1174-1207.
  • [30] G.K. Zipf, National Unity and Disunity, Blomington, in: Principia Press 1941.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.