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Abstract

We say that a random variable X taking nonnegative integers has
selective lack-of-memory (SLM) property with selector s if P(X > n+
s/X >n)=P(X > s)forn=0,1,....This property is characterized in
an elementary manner by probabilities p,, = P(X = n). An application
in car insurance is presented.
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1. INTRODUCTION

A nonnegative random variable X is said to have the lack-of-memory (or no
memory) property, if

(1.1) P(X>a+b/X >a)=P(X >b)
for any nonnegative a and b (cf., for instance, Feller [7], Galambos and

Kotz [8], Brémaud [1], Stirzacker [15]). Most of known results in this area
deals with the continuous case (see, e.g., Marsaglia and Tubilla [11],
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Schimizu [14]). It is well known that in this case all solutions of the
functional equation (1.1) are represented by exponential distributions. More
advanced methodology involving Cauchy integrated equation with general-
izations to the bivariate case was suggested by Lin [10] , Rao et al. [12], Roy
[13] and Kulkarni [9].

For random variables taking only nonnegative integers the condition
(1.1) reduces to P(X > n+m/X > n) = P(X > m) for all nonnegative
integers m and n. It appears that any nontrivial distribution having this
property is the geometric one (see [7|] Ch. XIII, Sec. 9, [8], [1] p. 48).

In this paper we consider a weaker property, P(X > n+ s/X > n) =
P(X > s) for a given positive integer s, called selector. Some results in
this area are scattered under the name of the almost-lack-of-memory (ALM)
property in a series of papers |2]-[6] by Chukova, Dimitrov, Green and Khalil.
Instead of ALM we shall use the term selective lack-of-memory (SLM) with
selector s which seems to be more informative (cf. Szala [16]).

All our results are derived in a simple and direct way and presented in
a readable form. They are also supported by application in car insurance.

For convenience, let us begin from some classical results.

2. DISCRETE LACK-OF-MEMORY DISTRIBUTIONS

Let X be a random variable taking nonnegative integer values.

Definition 1. The random variable X is said to have the lack-of-memory
property if

(2.1) P(X >n+m/X >n)=P(X >m)

for all nonnegative integers m and n.

The equation (2.1) may be presented in a simpler equivalent form.
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Lemma 1. The condition (2.1) holds if and only if
(2.2) P(X>n+1)=P(X >n)P(X >1)

for any nonnegative integer n.

Proof. The implication (2.1) = (2.2) is evident. The converse one may
be verified by induction with respect to m.

By (2.2) the condition (2.1) is satisfied for m = 1. Now suppose (2.1) is
met for all m < k. Then, by definition of the conditional probability and by
(2.2),

P(X>n+m+1)
P(X >n)

P(X > n+m+1/X >n)=

_ HXZ;??SXZU:p@>n+WW>MP@>U

= P(X>m)P(X>1)=P(X >m+1)

yielding the desired result. [ |

For completeness let us recall the well known result by Feller ([7], Sec.XIII.9)
on characterization of the geometric distribution.

Theorem 1. Let X be a not degenerated random variable taking nonnegative
integers with distribution P(X =n) =p, forn=0,1,... . Then X has the
lack-of-memory property, if and only if,

pn=p"(1 —p) for somepe (0,1).
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As we see, the family of all distributions having the lack-of-memory property
is very narrow. To extend it we shall replace the integer 1, appearing in the
condition (2.2) by arbitrary positive integer s.

3. DISCRETE DISTRIBUTIONS WITH SELECTIVE LACK-OF-MEMORY

Let us start from the following definition.

Definition 2. We shall say that a random variable X, taking integer (not
necessarily nonnegative) values N, N + 1, N + 2, ... | has the selective lack-
of-memory (SLM) property with (positive) selector s, if

(3.1) P(X >n+s)=P(X >n)P(X >s) for all integers n > N.

As a direct consequence of this definition we get the following corollary.

Corollary 1. A discrete random variable X has the selective lack-of-memory
property with selector s, if and only if, X + k has this property, where k is
an arbitrary nonnegative integer.

This corollary will be useful in the further consideration. Among others, we
may and shall restrict our consideration to the case N = 0.

Theorem 2. A not degenerated random variable X taking nonnegative in-
tegers has the selective lack-of-memory property with selector s, if and only

if,
(3-2) P(X =n) =q"pn

for some nonnegative pg,p1,...,ps—1, such that
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s—1
0<> pi<l,
i=0
where m and k are uniquely determined by the conditions m = n(mod s) and

s—1

m’ while ¢ =1 — Zpi.
i=0

=1

S

This theorem follows directly from the following proposition.

Proposition 1. For arbitrary convergent sequence {pn}n>0 of nonnegative
numbers, given positive q and positive integer s, the following are equivalent:

(a) Pn+s = qPn, for n = Oa 1> 27

(b) Z pi:qZpi, for n=0,1,2,...
i=n

i=n+s

Moreover, the number q, if such exists, satisfies the condition

[e'¢) s—1 s—1
> pi—> pi > pi
i=0 i=0 i=0

=1

oo T oo :
> pi > pi
=0 1=0

(3:3) q=

Proof. (of the proposition)

(a) = (b)
If (a) holds then the sequence {p,} may be decomposed on s geometric
subsequences {pminstn>0, m = 0,1,...,s — 1, with the common ratio g.
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This implies directly (b) for all n of the form n = ks.
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Now, by Corollary

1, the problem with arbitrary n reduces to the case n = ks. In this way the

implication (a) = (b) is proved.

(b) = (a)
We observe that

Pn

SNEDS

=n

Thus, if (b) holds, then

Z pi=q

1=n+s+1

S
Pn+ts = Z bi —

t=n-+s

completing the proof of the implication.

In order to verify (3.3), let us rewrite

o0
Z pi
i=0

s—1 00
= D pm D d"=
m=0 n=0

This implies the desired result.

i=n+1

(Z pi —

p;.

o
> pi> = qpn

1=n-+1

Let us note that if the condition (a) in the Proposition 1 holds for some s
and ¢ then it also holds for s’ = ms and ¢’ = ¢™, where m is any positive

integer.
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Definition 3. The minimal s, such that X has the selective lack-of-memory
with selector s is said to be the principal selector of X.

We state the following elementary lemma.

Lemma 2. Assume X has the selective lack-of-memory with selector s

(a) If s is a prime number then it is the principal selector of X.

(b) If s is not a prime number, say s = rt, then s is the principal selector
of X, if and only if, the finite sequence pgy,p1,...,Ps—1, Gppearing in
Theorem 2 can not be decomposed on r geometric subsequences of the
form {py},{ptit1}, s {Ptitr—1} with the same rate, fori =0,...,r—1.

4. APPLICATION IN CAR INSURANCE

An insurance company applies 3 levels of insurance rate, depending on the
number of the accidences caused by driver in the last two years: basic - if
one, reduced - if none, and raised - if more than one. Suppose, for simplicity,
that a driver may cause not more than one accident per year with probability
p and the numbers of accidents in different years are independent.

Let T be the first passing time (in years) from the basic one to an other
rate of the insurance. It is easy to verify that

0, if n <2
P(T=n)={ (1—=2p+2p*)(p— p2)n772’ if n>2 and even
(p—p?)"7, ifn>2 and odd.

Thus, by Theorem 2, the random variable T' — 2 has the selective lack-of-
memory with selector s = 2 and, moreover, pg = 1 — 2p + 2p?and p; = q =
p — p?. In consequence, by Corollary 1, the random variable T' also has the
selective lack-of-memory. It is evident that s = 2 is its principal selector.
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