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Abstract

The paper deals with construction of exact confidence intervals
for the variance component σ2

1
and ratio θ of variance components σ2

1

and σ2 in mixed linear models for the family of normal distributions
Nt (0, σ2

1
W + σ2It). This problem essentially depends on algebraic

structure of the covariance matrix W (see Gnot and Michalski, 1994,
Michalski and Zmyślony, 1996). In the paper we give two classes of
bayesian interval estimators depending on a prior distribution
on (σ2

1
, σ2) for:

1) the variance components ratio θ - built by using test statistics
obtained from the decomposition of a quadratic form y′Ay for the
Bayes locally best estimator of σ2

1
, Michalski and Zmyślony

(1996),

2) the variance component σ2

1
- constructed using Bayes point

estimators from BIQUE class (Best Invariant Quadratic Unbiased
Estimators, see Gnot and Kleffe, 1983, and Michalski, 2003).
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In the paper an idea of construction of confidence intervals using gen-
eralized p-values is also presented (Tsui and Weerahandi, 1989, Zhou
and Mathew, 1994). Theoretical results for Bayes interval estimators
and for some generalized confidence intervals by simulations studies for
some experimental layouts are illustrated and compared (cf Arendacká,
2005).

Keywords: mixed linear models; variance components; hypothesis
testing; confidence intervals; generalized p-values.
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1. Introduction

We consider a mixed linear model

(1) y = Xβ + X1β1 + e,

where y is an (n x 1) observed vector, X is a known (n x q)-matrix of rank
s, s ≤ q, X1 is a known (n x q1)-matrix of rank s1, s1 ≤ q1, β is a q-vector
of parameters corresponding to fixed effects, while an unobservable random
vector β1 and a vector of random errors e are stochastically independent
and normally distributed with zero mean and the covariance matrix σ2

1Iq1

and σ2In, respectively. Under these assumptions we obtain

(2) E(y) = Xβ , V ar(y) = σ2
1V1 + σ2In , V1 = X1X

′
1.

In this paper we restrict our attention to quadratic estimators y ′Ay which
are invariant under the group of translations g(y) = y + Xβ, i.e., for which
AX = 0. It can be checked that if B is (n − s) x n-matrix such that
BB′ = In−s, B

′B = I − XX+ then t = By is a maximal invariant statistic
under this group of translations. The model for t is as folows

(3) E(t) = 0 , Cov(t) = E(tt′) = σ2
1W + σ2In−s , W = BV1B

′.

Denote by α1 > α2 > ... > αh−1 > αh = 0 the ordered sequence of different
eigenvalues of W . Let W =

∑h
j=1 αjEjE

′
j be the spectral decomposition

of W.
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Following Olsen et al. (1976) let us consider the random vector Z =
(Z1, ..., Zh−1, Zh) where Zi = t′Eit/νi, for i = 1, ..., h−1, h and ν1, ..., νh−1, νh

are the multiplicities of α′s. Under normality of y the random variables
Z ′

is are stochastically independent, and νiZi/(αiσ
2
1 + σ2) are central

chi-squared distributed with νi degrees of freedom, i = 1, ..., h. The model
for Z = (Z1, ..., Zh−1, Zh) is as follows

(4)















E(Z) = L(σ2
1 , σ

2)′ ; L′ =

[

α1 ... αh

1 ... 1

]

V ar(Z) = 2diag
{

(αiσ
2
1 + σ2)2/νi

}

.

In Section 2 we use the results of point estimation for any function f ′σ =
f1σ

2
1 + f2σ

2 to construct possibly shortest exact Bayes confidence intervals
on variance component σ2

1 . It follows from results of Seely (1970) that in
the model (3) each function f ′σ is invariantly estimable iff matrices W and
I are linearly independent or equivalently iff the number h of different eigen
values of W satisfies: h ≥ 2.

In Subsection 2.2 and Section 3 we show that the problem of interval
estimation for variance componnet σ2

1 or for variance ratio θ = σ2
1/σ

2 is also
connected with testing the hypothesis about σ2

1

(5) Hσ : σ2
1 ≤ σ2

0 vs Kσ : σ2
1 > σ2

0

or the hypothesis about θ

(6) Hθ : θ ≤ θ0 vs Kθ : θ > θ0.

It is known fact, that in general, tests which have good statistical properties
(most powerful tests and locally best tests) lead to good confidence intervals
at fixed confidence level. In Section 3 we give a class of the Bayes confidence
intervals on the variance ratio θ constructed by using test statistics FA−

+

(σ∗)

obtained from the decomposition of a quadratic form t′At for the Bayes
locally best estimator of σ2

1 at point σ∗ = (σ∗
1 , σ

∗)′ (see Michalski and
Zmyślony, 1996). Unfortunately, we can not directly construct the
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confidence interval for variance component σ2
1 due to the presence of

nuisance parameter σ2. Therefore, a useful approach is to construct
confidence interval on σ2

1 using generalized p-values and generalized test
variables. In Section 4 we show the idea of generalized p-values and
generalized test variables which was introduced by Tsui and Weerahandi
(1989) and further developed by Weerahandi (1991, 1993).

2. Bayesian interval confidence

In this section we consider Bayes approach to construct possibly shortest
confidence intervals on the variance component or the variance ratio using
results for estimable functions f ′σ and test statistics derived from locally
best invariant quadratic and unbiased estimators for variance component
σ2

1 .

Definition 2.1. An estimator y′Ay is Bayesian invariant quadratic and
unbiased (BIQU) of f ′σ with respect to U = (uij)i,j=1,2 (or with respect
to prior distribution τ , such that Eτσσ′ = U), if A minimizes the Bayesian
risk Varτ (y

′Ay) in the class of symmetric and positive definite matrices that
satisfied conditions: AX = 0, E(y′Ay) = f ′σ.

Let U be a class of symmetric and positive definite with nonnegative elements
matrices U . It is known (see e.g., Gnot and Kleffe, 1983, or Gnot, 1991) that
a class U can be with accuracy to multiplication by constant characterized
using two nonnegative parameters u, v as follows

U =

{

U = Uu,v =

[

u2 + v u

u 1

]

, u, v ≥ 0

}

∪ U0

= Uu,∞ =

[

1 0

0 0

]

.

2.1. Bayesian interval estimators on σ2
1

We consider a class of admissible invariant quadratic and unbiased estimates
for a given function f ′σ = f1σ

2
1 + f2σ

2, which are Bayesian with respect to



Bayesian and generalized confidence intervals on ... 9

prior distribution τ with Eτσσ′ = U . It follows from Gnot and Kleffe (1983)
that for a given function f1σ

2
1 + f2σ

2 the class AIU of admissible invariant
quadratic unbiased estimators in the model given by (3) coincides with the
linear combinations of minimal sufficient statistics Zi as follows

AIU =

{

γ̂(u, v) =

h
∑

i=1

(λ1αi + λ2)νiwi(u, v)Zi, u, v ≥ 0

}

∪ A0,

where wi(u, v) = (1+2uαi +(u2 +v)α2
i )

−1, and class A0 consists of limiting
estimates γ̂(∞) obtained as v tends to infinity which are Bayesian with
respect to τ0 with U0, i.e.,

A0 =

{

γ̂(∞) =

h−1
∑

i=1

λ1νi

αi
Zi + λ2νhZh

}

.

Here λ1 and λ2 are chosen such that γ̂(u, v) or γ̂(∞) is unbiased for f1σ
2
1 +

f2σ
2, i.e.,



































h
∑

i=1

(λ1αi + λ2)wi(u, v)αiνi = f1

h
∑

i=1

(λ1αi + λ2)wi(u, v)νi = f2

for γ̂(u, v), while for γ̂(∞) we have

λ1rank(W ) = f1 and λ1

h−1
∑

i=1

νi

αi
+ λ2νh = f2.

Now, we give the construction of an exact 1 − p confidence interval for σ2
1

based on BIQUE of σ2
1 according to the following algorithm A1-5:
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A1. Choose the BIQUE σ̂2
1 =

∑h
i=1 aiZi of σ2

1 with respect to the prior
distribution τ on (σ2

1 , σ
2) for given parameters u, v ≥ 0:

E (σ̂2
1) = σ2

1 ;
h
∑

i=1

aiαi = 1 ;
h
∑

i=1

ai = 0.

A2. Calculate the variance of σ̂2
1 :

Var (σ̂2
1) = 2σ4

1

h
∑

i=1

a2
i

νi
(1/θ + αi)

2.

A3. Determine the exact probability distribution of σ̂2
1:

σ̂2
1 ∼ σ2

1

h
∑

i=1

ai

νi
(1/θ + αi)χ

2
νi

,

so that for fixed σ2
1 and for each θ ∈ (0,∞) we have

σ̂2
1

σ2
1

∼
h
∑

i=1

ai

νi
(1/θ + αi)χ

2
νi

=

h
∑

i=1

(
√

2/2)SEθ(aiZi)χ
2
νi

,

where SE(·) determines the standard error of an estimator.

A4. Find the quantiles Cp1
and Cp2

from the distribution of quadratic form

Q(θ) =
∑h

i=1 bi(θ)χ2
νi

where bi(θ) = (ai/νi)(1/θ + αi), such that

Pr

{

Cp1
(θ) ≤ σ̂2

1

σ2
1

≤ Cp2
(θ)

}

= 1 − p1 − p2 = 1 − p or

Pr
{

σ̂2
1/Cp2

(θ) ≤ σ2
1 ≤ σ̂2

1/Cp1
(θ)
}

= 1 − p1 − p2 = 1 − p.
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A5. Optimal choice of (Cp1
(θ), Cp2

(θ))

(A5.1) choose the optimal pair (C∗
p1

(θ), C∗
p2

(θ)) for fixed θ:

(C∗
p1

(θ), C∗
p2

(θ)) = Arg







min
Cp1

,Cp2
p1+p2=p

(1/Cp1
(θ) − 1/Cp2

(θ))







,

(A5.2) find θ? for θ ∈ (0,∞):

θ∗ = Arg

{

max
θ∈(0,∞)

(1/C∗
p1

(θ) − 1/C∗
p2

(θ))

}

.

The maxmin (1 − p) confidence interval on variance component σ2
1 con-

structed using the above algorithm as [σ̂2
1/Cp2

(θ∗) , σ̂2
1/Cp1

(θ∗) ] guarantees
good surroundings of the point estimator of σ2

1 and gives a sort of protection
against the worst possible scenario.

2.2. Bayesian interval estimators on θ = σ2
1/σ

2

Let us consider locally best unbiased quadratic invariant (LBUQI) estimator
of σ2

1 at point σ∗ = (σ∗
1 , σ

∗)′. To present a convenient form of this estimator
let us define a random variable K as follows

Pr{K = αj} = νj/c(σ
∗
1αj + σ∗)2, j = 1, 2, ..., h

and

c =
h
∑

j=1

νj/(σ
∗
1αj + σ∗)2.

From Lemma 4.1 (Michalski and Zmyślony, 1996) we have that a LBUQI
estimator of σ2

1 at point σ∗ = (σ∗
1 , σ

∗)′ is t′A∗t, where

(7) A∗ = [cVar(K)]−1
h
∑

j=1

αj −E(K)

(σ∗
1αj + σ∗)2

Ej,
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while E(K) and Var(K) denote the expectation and variance of K, respec-
tively. Hence we have the following decomposition of A∗ = A∗

+ −A∗
−, where

A∗
+ = [cVar(K)]−1

∑

αj>E(K)

αj −E(K)

(σ∗
1αj + σ∗)2

Ej ,

A∗
− = [cVar(K)]−1

∑

αj<E(K)

E(K) − αj

(σ∗
1αj + σ∗)2

Ej .

Now, let us consider the test statistics in the following form

(8) F
A

+

−

=
t′A∗

+t

t′A∗
−t

=

∑

αj>E(K)

αj −E(K)

(σ∗
1αj + σ∗)2

t′Ejt

∑

αj<E(K)

E(K) − αj

(σ∗
1αj + σ∗)2

t′Ejt

The probability distribution of the ratio statistics for each fixed
σ = (σ2

1 , σ
2)′ is as follows

(9) F
A

+
−

=
t′A∗

+t

t′A∗
−t

∼

∑

αj>E(K)

αj −E(K)

(σ∗
1αj + σ∗)2

(σ2
1αj + σ2)χ2

νj

∑

αj<E(K)

E(K) − αj

(σ∗
1αj + σ∗)2

(σ2
1αj + σ2)χ2

νj

.

or for each θ

(10) F
A

+

−

=
t′A∗

+t

t′A∗
−t

∼

∑

αj>E(K)

αj −E(K)

(σ∗
1αj + σ∗)2

(θαj + 1)χ2
νj

∑

αj<E(K)

E(K) − αj

(σ∗
1αj + σ∗)2

(θαj + 1)χ2
νj

.
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The test statisic given by (8) can be used for testing hypothesis given by
(6) and for a construction of the confidence interval on variance ratio θ. To
build an exact confidence interval on θ we consider test statistics given by
(8) as a function of the parameter θ, namely

(11) F
A

+
−

(θ) =

∑

αj>E(K)

αj −E(K)

(σ∗
1αj + σ∗)2(θαj + 1)

t′Ejt

∑

αj<E(K)

E(K) − αj

(σ∗
1αj + σ∗)2(θαj + 1)

t′Ejt

.

It is not difficult to show that F
A

+
−

(θ) is a strictly convex and decreasing

function of θ ∈ (−1/α1,∞). Next, for each fixed θ the probability distribu-
tion of F

A
+

−

(θ) is the same as the distrubution of the ratio of positive linear

combinations of independent central chi-squared random variables, i.e.,

(12) F
A

+
−

(θ) ∼

κ
∑

j=1

bjχ
2
νj

h
∑

j=κ+1

b∗jχ
2
νj

,

where

bj =
αj −E(K)

(σ∗
1αj + σ∗)2

for j = 1, ..., κ : αj > E(K)

and

b∗j =
E(K) − αj

(σ∗
1αj + σ∗)2

for j = κ + 1, ..., h : αj < E(K).

Now, in order to construct the 1 − p confidence intervals (p1 + p2 = p) we
must find the critical values Cp1

and Cp2
such that

(13) Pr



























Cp1
≤

κ
∑

j=1

bjχ
2
νj

h
∑

j=κ+1

b∗jχ
2
νj

≤ Cp2



























= 1 − p1 − p2
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or equivalently

(14)











































Pr







κ
∑

j=1

bjχ
2
νj

−
h
∑

j=κ+1

b∗jCp1
χ2

νj
> 0







= 1 − p1

Pr







h
∑

j=κ+1

b∗jCp2
χ2

νj
−

κ
∑

j=1

bjχ
2
νj

> 0







= p2.

Thus the solutions Cp1
and Cp2

of (13 or 14) are based on the distribution
of quadratic forms Q =

∑m
i=1 λiχ

2
νi

(for details see e.g., Imhof, 1961, Davies,
1980). Next, we must solve following nonlinear equations

(15) F
A

+

−

(θ̄) = Cp1
and F

A
+

−

(θ) = Cp2
,

where F
A

+

−

(θ) is determined by (11) and 0 < Cp1
, Cp2

≤ F
A

+

−

(0). The

solution is ensured by the properties of F
A

+
−

(θ). From equations given by

(15) we obtain the exact 1-p confidence interval on variance ratio θ as follows

[θ , θ̄] =

[

F−1
A

+

−

(Cp2
) , F−1

A
+

−

(Cp1
)

]

.

Finally, to obtain the shortest 1 − (p1 + p2) confidence interval we have to
allocate properly the mass probability in the left tail (p1) and in the right
tail of the distribution (p2). Thus for a choice of the pair (p0

1, p
0
2) we obtain

the confidence interval on θ at fixed confidence level 1 − (p1 + p2) whose its
length l(p1, p2) satisfies

l(p0
1, p

0
2) = min

p1,p2
p1+p2=p

[

F−1
A

+
−

(Cp1
) − F−1

A
+
−

(Cp2
)

]

.
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Remark 2.1. The test statistic given by (8) was used by Michalski and
Zmyślony (1996) for testing hypothesis Hσ : σ2

1 = 0 versus Kσ : σ2
1 > 0.

Using the Bayes locally best unbiased quadratic invariant estimator of σ2
1 at

the point (σ∗
1 , σ

∗) = (0, 1) which is MINQUE for σ2
1 , the test statistic can

be expressed as follows

F
A

+
−

=
t′A∗

+t

t′A∗
−t

=

∑

α∗

j >0

αj∗νjZj

∑

α∗

j <0

αj∗νjZj

,

where α∗
i = αi − trace(W )/rank(W ).

3. Generalized confidence interval on σ2
1

Following Tsui and Weerahandi (1989) we present in this section the con-
cept of generalized p-value and generalized test variables which was further
developed by Weerahandi (1991, 1993). The concept has been proposed
to some testing problems where nuisance parameters are present and it is
difficult or impossible to obtain a rational test at a fixed significance level.

3.1. The idea of constructing a generalized confidence interval

Let X be a random vector with a cumulative distribution function F (x, ϑ),
where a vector ϑ = (ξ, δ) represents unknown parameters: ξ is a scalar
parameter of interest, δ is a nuisance parameter (scalar or vector). We are
interested in testing

Hξ : ξ ≤ ξ0 against Kξ : ξ > ξ0.

Suppose it is difficult or impossible to find a test statistic T (X) whose distri-
bution at ξ0 is independent of the nuisance parameter δ and thereby we can
not determine an appropriate critical region for a given significance level.
We then consider a random variable T (X;x, ϑ), which also depends on the
observed value and the parameters.

Definition 3.1. If a function T (X;x, ϑ), where ϑ = (ξ, δ) satisfies the
following conditions:
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(i) for fixed ξ, the distribution of T (X;x, ϑ) does not depend on δ for
each x,

(ii) the observed value of T (X;x, ϑ) (i.e., tobs = T (x;x, ϑ)) does not
depend on unknown parameters,

(iii) for fixed x and δ, T (X;x, ϑ) is stochastically increasing in ξ i.e.,
Pr{T (X;x, ϑ) ≥ t}is nondecreasing in ξ it is called a generalized test
variable.

Condition (iii) implies, that a generalized test variable orders the sample
space and thus can be effectively used for finding a critical region in testing
Hξ : ξ ≤ ξ0 vs Kξ : ξ > ξ0 in the following form

C(x, ϑ) = {X : T (X;x, ϑ) ≥ T (x;x, ϑ)}

and the generalized p-value for testing Hξ against Kξ is

p(x) = sup
ξ≤ξ0

Pr{X ∈ C(x, ϑ)|ξ} = sup
ξ≤ξ0

Pr{T (X;x, (ξ, δ)) ≥ tobs|ξ}

= Pr{T (X;x, (ξ0, δ)) ≥ tobs|ξ}.

Condition (iii) guarantees that the expressions above for critical region are
equal and thanks (i) and (ii) the generalized p-value is computable. Condi-
tion (iii) also implies that Pr{T (X;x, ϑ) ≥ tobs|ξ} becomes large as (ξ − ξ0)
increases. Besides, larger p-values favour the null hypothesis , the smaller
p-values favour the alternative, and so tests based on generalized p-values re-
ject the null hypothesis for small values p(x), similarly to classical p-values.
Next, having determined a generalized critical region for testing Hξ : ξ ≤ ξ0

versus Kξ : ξ > ξ0 we define a power function of the test based on data.

Definition 3.2. Function π(x, ξ) = Pr{X ∈ C(x, (ξ, δ))|ξ} is called a data-
based power function if holds:

(a) π(x, ξ0) = p(x),

(b) for each fixed x, π(x, ξ) ∼ R(0,1) (an uniform random variable on
(0,1), for an arbitrary ξ),

(c) for each fixed x, π(x, ξ) is a monotonic function of ξ.
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Properties (a) and (b) guarantee the power function π(x, ξ) can be used for
the construction of a confidence interval on the parameter ξ. For π1, π2 ∈
(0, 1) such that π2 − π1 = 1 − p and a given observed x it holds:

Pr{π1 ≤ π(x, ξ) ≤ π2} = 1 − p.

Finally, by inversion we get a (1 − p) generalized confidence interval on the
parameter ξ.

3.2. Generalized test variables

Let us consider the model given by (3) and problem of testing the hypothesis
Hσ : σ2

1 ≤ σ2
0 vs Kσ : σ2

1 > σ2
0 with an arbitrary nonnegative σ2

0 .
The minimal sufficient statistics for the family of normal distributions of
maximal invariant t = By, i.e., for Nt (0, σ2

1W + σ2It) (see sec. 1) are
U1 = t′E1t, ..., Uh−1 = t′Eh−1t, Uh = t′Eht, such that, S1 = U1/(α1σ

2
1 +

σ2) ∼ χ2
ν1

, . . . , Sh−1 = Uh−1/(αh−1σ
2
1 +σ2) ∼ χ2

νh−1
and Sh = Uh/σ2 ∼ χ2

νh
.

First, we consider the case h = 2, i.e., when a matrix W has only two
different eigen values: α1 > 0 and α2 = 0. Then the function T (X,x, ξ, δ)
= T ((U1, U2), (u1, u2), σ

2
1 , σ

2) = S1(1/S2 + α1σ
2
1/u2) satisfies conditions (i)-

(iii) as a generalized test variable. Its observed value tobs = u1/u2 does not
depend on the unknown parameters, the distribution of T is independent of
the nuisance parameter σ2 and T is stochastically increasing in σ2

1 . It can
be shown that the generalized test of (5) is unique, i.e., all generalized test
constructed on the base of statistics U1, U2 can be based on the test variable
T (see Weerahandi, 1995, Theorem 5.2).

In the general case when h > 2, as does not exist the uniformly most
accurate 1−p confidence interval on θ (see Michalski 1995, 2003), the same,
a choice of the generalized test of (5) is not unique. Zhou and Mathew
(1994) showed this using a test variable as follows

(16) T1 = T
c1,...,ch−1

1 =

h−1
∑

i=1

ciSi

(

1

Sh
+

αiσ
2
1

uh

)

,

which is a generalized test variable for testing (5) for arbitrary positive real
numbers ci, i = 1, ..., h−1. A problem arises how to choose these constants.
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For testing (5) with σ2
0 = 0 the test variable T1 coincides under Hσ, for a

special sets of constants ci, with following statistics:

– Wald’s statistic FW =
∑h−1

i=1
Ui

Uh
for ci = 1 (Seely and El-Bassiouni, 1983)

– modified Wald’s statistic F ∗
W =

∑h−1

i=1
αiUi

Uh
for ci = αi or more generally,

F (u, v) =

h−1
∑

i=1

αiwi(u, v)Ui

Uh
, u, v ≥ 0 for ci = αiwi(u, v)

and

wi(u, v) =
1

(1 + uαi)2 + vα2
i

(Gnot and Michalski, 1991, 1994). It is clear that F ∗
W = F (0, 0).

Now, in accordance with Section 2.1, consider Bayes estimators σ̂2
1(u, v)

and σ̂2
1(∞) from a class AIU . The estimators can be written in the form

∑h
i=1 cλ

i Si(σ
2+αiσ

2
1), where constants cλ

i are such that the unbiasedness con-
dition holds and we have additionally to calculate λ = (λ1, λ2) (see Subsec-
tion 2.1). For the limiting estimator σ̂2

1(∞), we obtain cλ
i = 1/(αirank(W )),

where rank(W )=
∑h−1

i=1 νi, and cλ
h = −∑h−1

i=1
νi

αi
/(νhrank(W )). To obtain

independence in the above expression on σ2 we multiply this parameter by
the observed value uh and next we divide by the random variable Uh. In
case all cλ

i , i = 1, ..., h − 1 are positive, it is easy to check that we get a
generalized test variable:

(17) Tλ =

h−1
∑

i=1

cλ
i Si

(

uh

Sh
+ αiσ

2
1

)

+ cλ
huh ,

which is stochastically increasing in σ2
1 and whose observed value is tλobs =

∑h
i=1 cλ

i ui. Let πT (u1, ..., uh, σ2
1) denote the data-based power function for

testing (5) based on test variable T (see Definition 3.2). The data-based
power function corressponding to the test variable Tλ is of the form:
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(18)

πTλ

(

u1, ..., uh, σ2
1

)

= Pr
{

Tλ ≥ tλobs|σ2
1

}

= Pr

{

h−1
∑

i=1

cλ
i Si

(

uh

Sh
+ αiσ

2
1

)

≥
h−1
∑

i=1

cλ
i ui|σ2

1

}

= Pr

{

h−1
∑

i=1

cλ
i Si

(

1

Sh
+

αiσ
2
1

uh

)

≥
h−1
∑

i=1

cλ
i ui

uh
|σ2

1

}

.

The last equality implies that the test based on the variable Tλ with
constants ci = cλ

i for i = 1, ..., h − 1 coincides with the test based on T1 and
is stochastically increasing in σ2

1 , and its observed value is
tλobs =

∑h−1
i=1 cλ

i ui/uh. Below, we put together formerly described the
following generalized test variables :

(19) T 1
1 = T 1,...,1

1 =

h−1
∑

i=1

Si

(

1

Sh
+

αiσ
2
1

uh

)

with t1obs =

h−1
∑

i=1

ui

uh
,

(20)

Tα
1 = T

α1,...,αh−1

1 =
h−1
∑

i=1

αiSi

(

1

Sh
+

αiσ
2
1

uh

)

with

tαobs =
h−1
∑

i=1

αiui

uh
,

(21)

T∞
1 = T

1/α1,...,1/αh−1

1 =

h−1
∑

i=1

1

αi
Si

(

1

Sh
+

αiσ
2
1

uh

)

with

t∞obs =

h−1
∑

i=1

ui

αiuh
.
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And general in connection with a BIQUE σ̂2
1(u, v) we obtain

(22)

Tλ = T
cλ
1
,...,cλ

h−1

1 =

h−1
∑

i=1

cλ
i Si

(

1

Sh
+

αiσ
2
1

uh

)

with

tλobs =

h−1
∑

i=1

cλ
i αiui

uh
,

where cλ
i = (λ1αi + λ2)wi,

λ1 =

h
∑

i

wiνi

h
∑

i

wiα
2
i νi

h
∑

i

wiνi −
(

h
∑

i

wiαiνi

)2 ,

λ2 =

−
h
∑

i

wiαiνi

h
∑

i

wiα
2
i νi

h
∑

i

wiνi −
(

h
∑

i

wiαiνi

)2

and

wi =
1

(1 + uαi)2 + vα2
i

, for u, v ≥ 0.

The values of data-based power function based on T1 are calculated from
the following equality:

πT1
(u1, ..., uh, σ2

1) = Pr

{

h−1
∑

i=1

ciSi

(

1

Sh
+

αiσ
2
1

uh

)

≥
h−1
∑

i=1

ciui

uh
|σ2

1

}

=

∫ ∞

0

(

1 − Fv

(

h−1
∑

i=1

ciui

uh

))

fVh
(v)dv,
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where Fv denotes the distribution function of a linear combination of
independent central χ2 random variables, i.e.,

h−1
∑

i=1

ci

(

1

v
+

αiσ
2
1

uh

)

Si ∼
h−1
∑

i=1

ci

(

1

v
+

αiσ
2
1

uh

)

χ2
νi

and fVh
is density function of a χ2

νh
distribution. Using Imhof’s (1961)

algorithm or the one given by Davies (1980) we may calculate probabilities
for any quadratic form Q =

∑k
j=1 bjχ

2
νj

.

It is worth stressing that in the general case (here for h > 2) on ac-
count of nonuniqueness in testing (5) we have a great set of addmissible test
variables not only over a choice of constants ci in T1. Weerahandi (1995)
proposed in a mixed one-way classification unbalanced model the generalized
test variable T2 as follows

(23) T2 =
h−1
∑

i=1

Si −
h−1
∑

i=1

uiSh

uh + αiσ2
1Sh

(see also Arendacká, 2005). It is easy to check that T2 is stochastically
increasing, its observed value is 0, and its the data-power function has a
simplified form, and so more convenient in computing, namely

πT2
(u1, ..., uh, σ2

1) = Pr

{

h−1
∑

i=1

Si −
h−1
∑

i=1

uiSh

uh + αiσ2
1Sh

≥ 0 |σ2
1

}

= Pr

{

h−1
∑

i=1

Si ≥
h−1
∑

i=1

uiSh

uh + αiσ2
1Sh

|σ2
1

}

,

where

h−1
∑

i=1

Si ∼ χ2
ν1+...+νh−1

.
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4. Comparison - numerical calculations

In this section we compare effects of the test variables which were presented
previously and used for constructing confidence intervals on the variance
component σ2

1 in two examples of model (5). A special case of model (1) is
a mixed two-way classification model

yijk = βj + ηi + εijk, i = 1, ..., s; j = 1, ..., b; k = 1, ..., nij ,

corresponding to block design BD(s, b, n,N), in which n experimental units
are arranged in b blocks (with fixed effects βj) and treated by s treatment
(with random effects ηi) according to the incidence matrix N = ∆D ′. The
matrix form of the above model can be presented as follows

y = D′β + ∆′η + ε .

In the numerical calculations we use the (s x b) matrix C associated with
the block design and given by C = diag{r1, ...rs}−Ndiag{1/k1 , ..., 1/kb}N ′,
where ∆1n = N1b = (r1, ..., rs) is the vector of treatment replications
and D1n = N ′1s = (k1, ..., kb) is the vector of block sizes, n =

∑

ij nij

is the total number of observations. Here 1a denotes a vector of ones.
Further, we apply the theorem, that the eigenvalues of the variance-covariance
matrix W in model (3) are the same as the positive eigenvalues of C which
has a very convenient form. For comparison two examples of block designs
were chosen having different properties. The first example refers to a binary
block design which is very close to the so called partially balanced
incomplete block design (PBIBD) with a small number of observations and
is connected with empirical data. The second block design is a complete
unbalanced and additionally orthogonal block design with a large number of
observations and refers to simulated data. Differentiated numbers of
observations in the examples imply essentially different mulipicities of zero
eigenvalue of matrix W . The simulation studies were executed, similarly as
in the paper of Arendacká (2005), for 5 pairs of the values of parameters
(σ2

1 , σ
2) ∈ {(0.1, 10), (0.5, 2), (1, 1), (2, 0.5), (5, 0.2)}, such that their product

equals 1.

The simulated probabilities of coverage are in both examples based
on 2000 simulations, while the average length of confidence intervals on
20 simulations. The values of the data-based power function π(y, σ2

1) were
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computed by numerical integration following the expressions in the Subsec-
tion 3.2. The bounds of the 95% generalized confidence intervals [σ2

1 , σ
2
1 ]

corresponding to generalized test variables T 1
1 , T α

1 (based on γ̂(0, 0)), T
1/α
1

(based on γ̂(∞)) and T2 were obtained by solving π(y, σ2
1) = 0.025 and

π(y, σ2
1) = 0.975. Next, Using algorithm A1-5 given in Subsection 2.1 we

present 95% Bayes confidence intervals [σ̂2
1/Cp2

(θ∗), σ̂2
1/Cp1

(θ∗) ] for specific
pairs (u,v): (0,0), (0,1),(1,0), (1,1) and (0, ∞) (see Table 4.).

The computations were realized using a modified procedure of Imhof
(1961) and also using package MATHEMATICA ver. 5.1, including in the
to comparison some numerical results from the paper of Arendacká (2005).

Example 1. Let us consider an empirical example of two-way classification
model (see Kala et al., 1992, cf. also Michalski, 1995) corresponding to block
design BD(v,b,n,N) with the following incidence matrix N

N =

























1 1 1 0 0 0

0 0 1 1 1 0

1 0 0 1 0 1

0 1 1 0 0 1

0 1 0 1 1 0

1 0 0 0 1 1

























,

with parameters s = 6, b = 6, n = 18, so that (r1, ..., r6) = (k1, ..., k6) =
316. According to this incidence matrix an experiment was done, in which
the influence of various types of lupine on total crop was investigated. As-
suming that types used in the experiment were chosen at random out of an
infinite population of types we can apply the mixed model with two variance
components given by (1). The vector y of observations ordered according to
treatments is as follows

y =(62.8, 54.9, 59.1, 73.8, 69.0, 62.9, 68.4, 67.3, 70.8,

73.0, 72.3, 73.0, 72.1, 73.2, 71.6, 71.6, 77.9, 78.8)′ .
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Table 1. The eigenvalues αi and their the multiplicities νi of matrix W .

i 1 2 3

αi 22
3 2 0

νi 3 2 n-rank(C)-b=7

Table 2. The probabilities of coverage of a true value σ2

1
by the generalized

confidence intervals constructed on base of the different test variables.

(

σ2
1 , σ

2
)

(0.1,10) (0.5,2) (1,1) (2,0.5) (5,0.2)

T 1
1 0.9540 0.9485 0.9490 0.9505 0.9515

Tα
1 0.9491 0.9503 0.9495 0.9525 0.9513

T
1/α
1 0.9515 0.9516 0.9560 0.9465 0.9535

T2 0.9520 0.9495 0.9560 0.9480 0.9520

Table 3. The average lenghts of the constructed 95% generalized confidence

intervals.

(

σ2
1 , σ

2
)

(0.1,10) (0.5,2) (1,1) (2,0.5) (5,0.2)

T 1
1 17.88 16.49 18.08 21.12 33.41

Tα
1 19.47 21.93 20.88 34.35 42.60

T
1/α
1 14.92 11.47 13.67 19.14 23.29

T2 13.44 12.09 13.34 17.41 25.26



Bayesian and generalized confidence intervals on ... 25

Table 4. The Bayes generalized confidence intervals at significance level

1− (p1 +p2) = 0.95 and their lengths l(p1, p2) for choosen pairs (u, v).

(u, v) σ2
1 σ2

1 p1 p2 l(p1, p2)

(0,0) 0.0 10.299 0.038 0.012 10.299

0.110 14.262 0.025 0.025 14.152

(0,1) 0.0 12.178 0.037 0.013 12.178

0.119 16.889 0.025 0.025 16.770

(1,0) 0.0 18.323 0.038 0.012 18.323

0.133 21.180 0.025 0.025 21.047

(1,1) 0.0 20.640 0.035 0.015 20.640

0.139 24.444 0.025 0.025 24.305

(u,∞) 0.0 9.456 0.038 0.012 9.456

0.121 14.128 0.025 0.025 14.007

Example 2. Consider an example of the two-way classification model (see
Gnot and Michalski, 1994, Michalski and Zmyślony, 1995) corresponding to
the orthogonal block design BD(v,b,n,N) with the following incidence matrix
N

N =



















1 1 2

1 1 2

1 1 2

2 2 4

12 12 24



















; r = (4, 4, 4, 8, 48) ; n = 68.

In this model we obtain
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Table 5. The eigenvalues αi and theirs the multiplicities νi of matrix W.

i 1 2 3 4

αi 18.2984 6.1722 4 0

νi 1 1 2 61

Table 6. The probabilities of coverage of a true value σ2

1
by the generalized

confidence intervals constructed based on the different test variables.

(σ2
1 , σ

2) (0.1,10) (0.5,2) (1,1) (2,0.5) (5,0.2)

T 1
1 0.9640 0.9465 0.9460 0.9500 0.9525

Tα
1 0.9480 0.9420 0.9445 0.9525 0.9475

T
1/α
1 0.9520 0.9520 0.9570 0.9465 0.9540

T2 0.9520 0.9485 0.9570 0.9470 0.9540

Table 7. The average lenghts of the constructed 95% generalized confidence

intervals.

(σ2
1 , σ

2) (0.1,10) (0.5,2) (1,1) (2,0.5) (5,0.2)

T 1
1 13.11 6.49 16.08 21.29 36.41

Tα
1 17.47 9.93 29.88 36.35 70.60

T
1/α
1 14.82 6.47 13.20 19.44 28.29

T2 14.48 6.44 13.17 19.41 28.26



Bayesian and generalized confidence intervals on ... 27

Table 8. The Bayes generalized confidence intervals at significance level 1 −
(p1 + p2) = 0.95 and their lengths l(p1, p2) for choosen pairs (u, v).

(u, v) σ2
1 σ2

1 p1 p2 l(p1, p2)

(0,0) 0.0 12.135 0.037 0.013 12.135

0.120 15.202 0.025 0.025 15.082

(0,1) 0.0 14.175 0.036 0.014 14.175

0.113 17.934 0.025 0.025 17.823

(1,0) 0.0 24.123 0.038 0.012 24.123

0.135 27.180 0.025 0.025 27.045

(1,1) 0.0 15.641 0.034 0.016 15.641

0.159 18.443 0.025 0.025 18.284

(u,∞) 0.0 12.988 0.037 0.013 12.988

0.106 15.401 0.025 0.025 15.295

Discussion

The inspection of the tables leads to the following general remarks:

(i) The simulated probabilities of coverage don’t indicate that the factual
probabilities of coverage of a true parameter σ2

1 by the constructed
generalized confidence intervals are lower than the postulated con-
fidence level 1 − p = 0.95. It seems that all used generalized test
variables perform equally well.

(ii) Comparing the average lengths of the constructed confidence inter-
vals, seems that some precaution is needed when using the test vari-
able T α

1 (see Tables 3 and 7). Probably, it is caused by the low
stability of confidence intervals lengths for different pairs (σ2

1 , σ
2).
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(iii) The results in Tables 3 and 7 indicate that the test variable T
1/α
1 and

T2 give shorter intervals as the ratio σ2
1/σ

2 increases while T 1
1 behaves

in the opposite way, its performance improves as the ratio decreases.

(iv) The results for the Bayesian confidence intervals on the variance com-
ponent σ2

1 indicate unambiguously an adventage for the Bayes ap-
proach for constructing the confidence intervals (see Tables 4 and
8). The confidence intervals are shorter and the method gives more
stabile confidence intervals than using the generalized test variables.
Besides, the lengths of the (1 − p) confidence intervals essentially de-
pend on the allocation of the mass probability p = p1 + p2 for the
two tails of the probability distribution of the statistics used to their
construction. It is confirmed that the symmetrical determination of
the lower and the upper quantiles, Cp1

and Cp2
, respectively in this

problem is not recommendable.
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