PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 28 | 1 | 143-155
Tytuł artykułu

Some remarks on operators preserving partial orders of matrices

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Stępniak [Linear Algebra Appl. 151 (1991)] considered the problem of equivalence of the Löwner partial order of nonnegative definite matrices and the Löwner partial order of squares of those matrices. The paper was an important starting point for investigations of the problem of how an order between two matrices A and B from different sets of matrices can be preserved for the squares of the corresponding matrices A² and B², in the sense of the Löwner partial ordering, the star partial ordering, the minus partial ordering, and the sharp partial ordering. Many papers have since been published (mostly coauthored by J.K. Baksalary - to whom the present paper is dedicated) that generalize the results in two directions: by widening the class of matrices considered and by replacing the squares by arbitrary powers. In the present paper we make a résumé of some of these results and suggest some further generalizations for polynomials of the matrices considered.
Rocznik
Tom
28
Numer
1
Strony
143-155
Opis fizyczny
Daty
wydano
2008
otrzymano
2007-12-14
Twórcy
autor
  • Institute of Socio-Economic Geography and Spatial Management, Adam Mickiewicz University, Dzięgielowa 27, PL 61-680 Poznań, Poland
Bibliografia
  • [1] J.K. Baksalary, O.M. Baksalary and Liu Xiaoji, Further properties of the star, left-star, right-star, and minus partial orderings, Linear Algebra Appl. 375 (2003), 83-94.
  • [2] J.K. Baksalary, O.M. Baksalary and Liu Xiaoji, Further relationships between certain partial orders of matrices and their squares, Linear Algebra Appl. 375 (2003), 171-180.
  • [3] J.K. Baksalary and J. Hauke, Partial orderings of matrices reffering to singular values of matrices, Linear Algebra Appl. 96 (1987), 17-26.
  • [4] J.K. Baksalary and J. Hauke, A further algebraic version of Cochran's theorem and matrix partial ordering, Linear Algebra Appl. 127 (1990), 157-169.
  • [5] J.K. Baksalary and J. Hauke, Characterizations of minus and star orders between the squares of Hermitian matrices, Linear Algebra Appl. 388 (2004), 53-59.
  • [6] J.K. Baksalary, J. Hauke, Liu Xiaoji and Liu Sanyang, Relationships between partial orders of matrices and their powers, Linear Algebra Appl. 379 (2004), 277-287.
  • [7] J.K. Baksalary, J. Hauke and G.P.H. Styan, On some distributional properties of quadratic forms in normal variables and some associated matrix partial orderings, Multivariate analysis and its applications, IMS Lecture Notes - Monograph Series 24 (1994), 111-124.
  • [8] J.K. Baksalary and S.K. Mitra, Left-star and right-star partial orderings, Linear Algebra Appl. 145 (1991), 73-89.
  • [9] J.K. Baksalary and F. Pukelsheim, On the Löwner, minus, and star partial orderings of nonnegative definite matrices and their squares, Linear Algebra Appl. 151 (1991), 135-141.
  • [10] J.K. Baksalary, F. Pukelsheim and G.P.H. Styan, Some properties of matrix partial orderings of nonnegative definite matrices, Linear Algebra Appl. 119 (1987), 57-85; Addendum, 220:3 (1995).
  • [11] M.P. Drazin, Natural structures on semigroups with involution, Bull. Amer. Math. Soc. 84 (1978), 139-141.
  • [12] J. Groß, Löwner partial ordering and space preordering of Hermitian non-negative definite matrices, Linear Algebra Appl. 326 (2001), 215-223.
  • [13] J. Groß, Remarks on the sharp partial order and the ordering of squares of matrices, Linear Algebra Appl. 417 (2006), 87-93.
  • [14] J. Groß, J. Hauke and A. Markiewicz, Some comments on matrix partial orderings, Discuss. Math., Algebra and Stochastic Methods 17 (1997), 203-214.
  • [15] J. Groß and S.O. Troschke, Some remarks on matrix partial orderings and of nonnegative definite matrices, Linear Algebra Appl. 264 (1997), 451-467.
  • [16] R.E. Hartwig, How to partially order regular elements, Math. Japon. 25 (1980), 1-13.
  • [17] R.E. Hartwig and G.P.H. Styan, On some characterizations of the 'star' partial ordering for matrices and rank subtractivity, Linear Algebra Appl. 82 (1986), 145-161.
  • [18] J. Hauke and A. Markiewicz, Remarks on partial orderings on the set of rectangular matrices, Discuss. Math. 13 (1993), 149-154.
  • [19] J. Hauke and A. Markiewicz, On partial orderings on the set of rectangular matrices and their properties, Discuss. Math. 15 (1995), 5-10.
  • [20] J. Hauke and A. Markiewicz, On partial orderings on the set of rectangular matrices, Linear Algebra Apl. 219 (1995), 187-193.
  • [21] J. Hauke, A. Markiewicz and T. Szulc, Inter- and extrapolatory properties of matrix partial orderings, Linear Algebra Apl. 332-334 (2001), 437-445.
  • [22] K. Löwner, Über monotone Matrixfunktionen, Math. Z. 38 (1934), 177-216.
  • [23] R. Mathias, The equivalence of two partial orders on a convex cone of positive semidefinite matrices, Linear Algebra Appl. 151 (1991), 27-55.
  • [24] J.K. Merikoski and Liu Xiaoji, On the star partial ordering of normal matrices, J. Ineq. Pure Appl. Math. 7 (1) (2006), Article 17.
  • [25] S.K. Mitra, On group inverses and the sharp order, Linear Algebra Appl. 92 (1987), 17-37.
  • [26] K.S.S. Nambooripad, The natural partial order on a regular semigroup, Proc. Edinburgh Math. Soc. 23 (1980), 249-260.
  • [27] Cz. Stępniak, Two orderings on a cone of nonnegative definite matrices, Linear Algebra Appl. 94 (1987), 263-272.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1097
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.