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Abstract

Commutative Jordan algebras play a central part in orthogonal
models. We apply the concepts of genealogical tree of an Jordan
algebra associated to a linear mixed model in an experiment conducted
to study optimal choosing of dentist materials. Apart from the conclu-
sions of the experiment itself, we show how to proceed in order to take
advantage of the great possibilities that Jordan algebras and mixed
linear models give to practitioners.
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1. Introduction

Jordan algebras were first introduced by [7] as part of a new framework
for quantum mechanics. The use of these algebras in statistical inference
started with the seminal papers of Seely, [13, 14] and [15]. This work as been
carried on by many authors, see for instance [6], [9, 10], [12] and [8]. We are
mainly interested in commutative Jordan algebras which, see for instance
[5], play a central part in the study of orthogonal models.
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Consider an experiment carried out to study the differences of two different
cements (C1 and C2) which were putted in the market for tooth treatments.
These differences are measured in terms of an index S (which is the response
variable) that measures the solidification of the cement. The idea is that the
sooner the cement gets solidified, the better it is, so that the dentist can call
in the next patient. This cement is applied conjointly with three different
photopolymerizers (F1, F2 and F3) intended to aid the solidification of the
cement. The index of solidification, S was measured at two distinct times
(t1 and t2) since depending on the treatment, some degree of solidification
is enough (or, “I have only ti minutes to spare with this patient... which
cement with which polimeryzer should I use?”) in 5 disks (d1, d2, d3, d4 and
d5) that gave 3 observations each (3 replicates).

The design and the analysis of the experiment is made according to the
properties and the pertinent basis of the Jordan algebra that is associated to
the linear mixed model used to interpret the experiment. These are well de-
fined and explained in [2] and [3]. As part of these properties, we will make
use of two different binary operations in Jordan algebras, the Kronecker

product (⊗) and the restricted Kronecker product (?), which were first in-
troduced in [5] and were developed in [2]. The most important theoretical
results are resumed in the next section.

2. Theoretical results

2.1. Binary operations and the genealogical tree

We start by defining the Kronecker product between two families of matrices.

Definition 1. Given the families of matrices, M1 = {M1i, i = 1, ..., w1}
and M2 = {M2i, i = 1, ..., w2}, we take

M1 ⊗ M2 = {M1i ⊗M2j : i = 1, ..., w1; j = 1, ..., w2}.

Suppose that Ai = sp(Mi), i = 1, 2, are Commutative Jordan Algebras
(CJA). In [13] we can see that it exists, for each CJA, a unique principal
base, i.e., a base constituted by a family of mutual orthogonal orthogonal
projection matrices (FMOOPM). Let Q1 = {Q1i, i = 1, ..., w1} and Q2 =
{Q2i, i = 1, ..., w2} be the principal basis of A1 and A2. Also, with Q =
Q1 ⊗ Q2 we put

A1 ⊗ A2 = sp(Q).
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Proposition 1. A1 ⊗ A2 is a CJA and Q1 ⊗ Q2 is it’s principal basis.

Let Mi ∈ M = M1 ⊗ M2, then Mi = M1i1 ⊗ M2i2 with M1i1 ∈ M1 and
M2i2 ∈ M2. Supposing

M1i1 =

w1∑

j1=1

b1i1j1Q1j1
and M2i2 =

w2∑

j2=1

b2i2j2Q2j2
,

we have

Mi =

w1w2∑

j=1

bijQj ,

where bij = b1i1j1b2i2j2 and Qj = Q1j1
⊗ Q2j2

, with i = i2 + (i1 − 1)w2

and j = j2 + (j1 − 1)w2. From here, it’s straightforward to show that the
transition matrix (this matrix is the matrix such that the i-th line are the
coordinates of matrix Mi with respect to the matrices of family Q, please
see [3]) between M and Q is

(1) B = B1 ⊗B2,

where B1 is the transition matrix between M1 and Q1 and B2 is the
transition matrix between M2 and Q2.

The identity element of Ai is

(2) Ki =

wi∑

j=1

Qij .

Proposition 2. Given k = 1, ..., w2 − 1, the family

Qk = {Q1h⊗Q2h′ , h = 1, ...., w1, h′ = 1, ..., k}∪{K1⊗Q2h, h = k+1, ..., w2}

is a FMOOPM .

The CJA with principal basis Qk will be the restricted k Kronecker product

of A1 and A2. We represent this CJA by A1 ?k A2. When k = 1, we write
A1 ? A2.

Remark that A1 ?w2
A2 = A1 ⊗ A2. The operation ?k can, in fact, be

generalized to any two families of matrices. We are interested in the case of
when, instead of only dealing with the principal basis of CJA’s, we operate
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families M1 and M2 of commuting symmetric matrices such that Q1 and
Q2 are the principal basis of A1 = sp(M1) and A2 = sp(M2). Putting

M1 ?k M2 = {Mih ⊗M2h′ , h = 1, ...., w1, h′ = 1, ..., k}

∪{K1 ⊗M2h, h = k + 1, ..., w2},

any matrix, say M, of sp(M1 ?k M2) will be of the form

(3) M =

w1∑

i1=1

k∑

i2=1

a1i1i2M1i1 ⊗M2i2 +

w2∑

i3=k+1

a2i3K1 ⊗M2i3 .

We now have

Proposition 3. Let M1 and M2 be two families of commuting symmetric

matrices and Q1, Q2 the principal basis of A1 = sp(M1) and A2 = sp(M2),
assume also that A2 is segregated with separation value k, i.e.,

B2 =

[
B11 0

B21 B22

]
,

where B11 is of the size k × k. Then,

A1 ?k A2 = sp(M1 ?k M2).

Besides this proposition, it’s straightforward to see that, if A2 has
segregation value k, given B1, the transition matrix of A1, the transition
matrix of A1 ?k A2 will be

(4) B =

[
B1 ⊗B11 0

1
′

w1
⊗B21 B22

]
.

Moreover, it’s trivial to see that, A1 ?k A2 will be segregated with separation
value w1k.

One case of singular importance, as we shall see later on, is the operation
A1 ? A2, when A2 is complete and segregated with separation value 1. In
this case, we have
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B2 =

[
n2 0

b B22

]
,

where b is of type (w2−1)×1 and B22 is “almost” B2, since it’s only missing
the first line and the first column of B2. The matrix B is then given by

(5) B =

[
n2B1 0

1
′

w1
⊗ b B22

]
.

These concepts are closely connected to linear mixed models. In [5] and
[2] we may see that all crossing, nesting and replicates in a mixed linear
model can be explained trough the ⊗ and ? products of CJA’s. In fact it
is possible to trace back the model building until we reach singular CJA’s,
drawing a genealogical tree for a model. This concept is deeply explained in
[2] where a singular CJA is defined by the one of the simplest linear model,
the random sample. This CJA has principal basis given by { 1

n
J, J̄}, where

J = 11′ and J̄ = I − 1
n
J, and is denoted by A (n).

This procedure is useful to obtain the principal basis of CJA’s associated
to models, starting from very simple input. We just write the factor by
lexicographic order and, between them, we write ⊗ if the first crosses the
following, or ? if the second is nested in the first. We will illustrate this
procedure later on, when writing the model to interpret the experiment
referred in the introduction.

2.2. Optimal estimators

Let

Y ∼ N


1µ +

m∑

i=2

Xiβi,

w−1∑

j=m+1

σ2
jMj + σ2I




be an orthogonal linear model. Putting M1 = 11′,Mi = XiX
′
i, i = 2, ...,m

and Mw = I, we have the M family, {M1, ...,Mw} and the principal basis
Q = {Q1, ...,Qw} of A = sp(M ) = sp(Q). In [2] we have necessary and
sufficient conditions for this last equality to hold. The transition matrix is
given by B = [bij ] which we suppose to be segregated with separation value
m, so that
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(6) B =

[
B11 0

B21 B22

]
,B′ =

[
B′

11 B′
21

0 B′
22

]

and

(7) (B′)−1 = U =

[
U11 U12

0 U22

]
.

We point out that the variance covariance matrix can be rewritten as

(8) V =
w∑

j=1

γjQj ,

where, with σ2
w = σ2, we have γj =

∑w
i=m+1 bijσ

2
i . The projection matrix

on the range space of the mean vector is

(9) Q =
m∑

i=1

Qi.

We suppose that V and Q commute and therefore, please see [16], we have
the following

Theorem 4. If Cβ is estimable, Ĉβ = C(X′X)+X′Y is it’s BLUE.

Putting A′ = [A′
1 · · ·A

′
m], we have Q = A′A such that we may write

(10) Xβ = A′η,

where η = AXβ and consider these, instead of the β, as parameters of the
model. Since A and X are known, we have η̂ = AXβ̂ = AXX+QY, and,
remembering that XX+ = Q, we get
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(11) η̂ = AY

and consequently

(12) Ĉη = CAY.

We can also write, for each i ∈ {1, ...,m}, ηi = AXiβi and η̂i = AiY.
Using this parameterization has some advantages, as we shall see later on.

We will now focus on equation (8). Putting σ2
1 = · · · = σ2

m = 0, σ2 =
[σ2

1 · · · σ
2
w]′ and γ = [γ1 · · · γw]′ we can write

(13) γ = B′σ2,

and, with

• σ2
[1] = [σ2

1 · · · σ
2
m]′,

• σ2
[2] = [σ2

m+1 · · · σ
2
w]′,

• γ [1] = [γ1 · · · γm]′

• γ [2] = [γm+1 · · · γw]′,

we have

(14) γ[1] = B′
21σ

2
[2]

as well

(15) σ2
[2] = U22γ[2].

These two last expressions are of extreme importance, since they show that
once we have an unbiased estimator for γ [2] we also have for σ2

[2] and γ[1].
Since E[Y] = 1µ +

∑m
i=2 Xiβi, we have that E[Y] ∈ R (

⊕m
i=1 Mi),

which, due to the segregation of the transition matrix, belongs
to the sub-space R (

⊕m
i=1 Qi) that is orthogonal to R

(⊕w
i=m+1 Qi

)
.

Thus

(16) E[AiY] = 0, i = m + 1, ..., w,



54 R. Covas

where A′
iAi = Qi. The variance covariance matrix of AiY, i = 1, ..., w, is

Σ(AiY) = AiVA′
i(17)

= Ai

w∑

j=1

γjQjA
′
i(18)

=

w∑

j=1

γjAiA
′
jAjA

′
i(19)

= γiIgi
.(20)

Since Σ(AiY) = E[(AiY − E[AiY])(AiY − E[AiY])′], for i = m +1, ..., w,
we have

(21) γiIgi
= E

[
(AiY)(AiY)′

]
.

From (16) and (21), we get

(22) E
[
(AiY)′(AiY)

]
= tr(γiIgi

) = γigi.

Putting

(23) Si =‖AiY‖2 =(AiY)′(AiY )=Y′QiY= tr(QiYY′)=< Qi,YY′ >,

we have

(24) E[Si] = γigi,
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which immediately leads us to take

(25) γ̃i =
Si

gi

as an unbiased estimator of γi, and therefore, γ̃ [2] = [γ̃m+1 · · · γ̃w]′ is an un-

biased estimator of γ [2], from which we obtain for σ2
[2] and γ[1] the unbiased

estimators

(26) σ̃2
[2] = U22γ̃[2]

and

(27) γ̃ [1] = B′
21σ̃

2
[2].

Having

1. det(V) =
w∏

j=1
γ

gj

j

2. V−1 =
w∑

j=1
γ−1

j Qj

the density of Y will be

(28)

n(y|µ,V) =
exp

(
−1

2(y − µ)′V−1(y − µ)
)

(2π)
n
2

w∏
j=1

γ
gj
2

j

=

exp

(
−1

2

w∑
j=1

(y − µ)′Qj(y − µ)

)

(2π)
n
2

w∏
j=1

γ
gj
2

j

.



56 R. Covas

Since Qj = A′
jAj and, for j > m, Qjµ = 0, we have that

(29) (y − µ)′Qj(y − µ) =





‖Aj(y − µ)‖2 = ‖ηj − η̂j‖
2 j ≤ m

‖AjY‖2 = Sj j > m

,

and therefore,

(30) n(y|µ,V) =
e
− 1

2

(
m∑

j=1

1

γj
‖ηj−η̂j‖

2+
w∑

j=m+1

Sj
γj

)

(2π)
n
2

m∏
j=1

γ
gj
2

j

.

Theorem 5. In a linear mixed normal model, the statistics η̂j and Sj,

defined above, are sufficient and complete.

Given the Blackwell-Lehmann-Scheffé theorem we then have

Corollary 6. The estimators γ̃[2], σ̃2
[2], γ̃[1] and η̂j, defined above, are

UMV UE.

From equations (17) to (20), we have that

Ĉηj ∼ N
(
Cηj, γjCC′

)
, j = 1, ...,m,(31)

Sj ∼ γjχ
2
(gj)

, j = m + 1, ..., w(32)

are mutually independent.

2.3. Pivot variables

According to the preceding section, we get the pivot variables
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1

γj

(
Ĉηj −Cηj

)
′(CC′)+

(
Ĉηj −Cηj

)
∼ χ2

(c), j = 1, ...,m, c = r(C)(33)

Sj

γj
∼ χ2

(gj)
, j = m + 1, ..., w.(34)

Clearly, all the γj, j = 1, ...,m, are (would be) nuisance parameters.

From equations (14) and (15), we may write

(35) γ [1] = B′
21U22γ[2].

This last equation enables us to write (33) in such a way that it only
depends on γ[2]. If cj is such that, for any given j ∈ 1, ...,m, γj = c′jγ[2],
we have

(36)
1

c′jγ[2]

(
Ĉηj −Cηj

)′
(CC′)+

(
Ĉηj −Cηj

)
∼ χ2

(gj)
, j = 1, ...,m.

Writing this equation in such fashion entails an enormous advantage,
since we may induce a density function for any γj , j = m + 1, ..., w,

say f(γj). This is possible since
Sj

γj
is an inducing pivot variable, in fact

it is an invertible (with respect to γj) function and, moreover, given
the observed value sj of Sj, it’s invertible function is m(z) =

sj

z
, which is

measurable since it is continuous. We may read about this subject with much
more detail in [1], where we have the induced density of
γj , , j = m + 1, ..., w,

f(γj|sj) =
1

Γ
(gj

2

)
γj

(
sj

2γj

) gj
2

e
−

sj
2γj ; γj > 0.(37)
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The statistics Sj , j = m+1, ..., w, are independent, thus the joint density is

(38) f(γ[2]|sm+1, ..., sw) =

w∏

j=m+1

f(γj|sj),

with marginals

(39) f(γj|sm+1, ..., sw), j = 1, ...,m.

If ζj(x|sm+1, ..., sw, γj) is the density of the product of two independent
random variables one with density f(γj|sm+1, ..., sw) and the other a χ2

(gj)
,

since the η̃1, ..., η̃m are independent between themselves as well as from the
Sm+1, ..., Sw, we may rewrite equations (33) and (34) as

(40)
(
C̃ηj−Cηj

)′
(CC′)+

(
C̃ηj−Cηj

)
∼ ζj(x|sm+1, ..., sw, γj), j =1, ...,m,

(41) γj ∼ f(γj |sj), j = m + 1, ..., w.

The density function ζj has nuisance parameters, so we may apply
Monte-Carlo methods.

It seems easy to obtain confidence intervals or to test hypothesis for γj ,
but for ηj it is not that evident. The work of obtaining confidence ellipsoids
for ηj has already been pursued by [4]. Taking c = r(C) we have the 1 − q

level confidence ellipsoid

(C̃ηj −Cηj)
′(CC′)+(C̃ηj −Cηj) ≤ ζ1−q,j

with ζ1−q,j the 1 − q quantile probability of ζj . By the Scheffé Theorem,
Cηj lies inside the previous ellipsoid if and only if
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(42)
⋂

z

(
|z′η̂ − z′η| ≤

√
cζ1−q,jz′CC′z

)
,

so we obtain simultaneous confidence intervals for the z′ηj. Whenever

|z′ηj0 − z′ηj| >

√
cζ1−q,jz

′CC′z

we may reject

H0 : z′ηj = z′ηj0

with a risk less or equal than q.

3. The experiment

For better understanding of the experiment referred in the introduction, we
now describe it in more detail.

The experimenter intends to evaluate the differences of two different
cements (C1 and C2) which are just now in market. These cements are
intended for tooth treatments. The differences between the cements are
measured in terms of an index that measures the solidification of the cement
and that we take as the response variable, i.e., Y. The cements are ranked
inversely to the time needed to solidification (in practice the sooner the
cement is solidified, the sooner the treatment is complete and the sooner
the dentist can call in the next patient, maximizing he’s profit).

The process of solidification is made under the effect of intensive light
(the same for both cements), aided by the presence of a photopolymerizer.
There are a few photopolymerizers in the market, from which the three most
common were taken into the experiment (F1, F2 and F3).

Depending on the tooth treatment made, some degree of solidification
can be enough, so the experimenter was interested in seeing if there were
differences in solidification with time. For example, if only some small grade
of solidification is needed, (meaning more time is spared), it is interesting
to ask which cement with which photopolymerizer should one use. For this
reason, the experiment was repeated at two given times (t1 and t2).



60 R. Covas

The experiment was conducted in 5 different disks (d1, d2, d3, d4 and d5),
which constitute the cells, that were big enough to give three uncorrelated
observations (r1, r2 and r3).

The results of the experiment are resumed in Table 1, in which we
present the averages of the observations in each disk.

Table 1. Averages of the disks

t1 t2

d1 d2 d3 d4 d5 d1 d2 d3 d4 d5

C1F1 26.03 28.43 27.40 26.10 26.77 29.37 30.53 30.27 29.80 29.63

F2 26.10 26.47 29.90 25.60 24.17 27.13 25.97 29.20 30.77 28.60

F3 9.83 10.00 10.17 10.67 11.37 9.83 10.00 10.17 10.67 11.37

C2F1 26.00 26.93 25.17 26.50 25.17 29.97 29.53 29.00 29.03 25.47

F2 27.37 26.43 26.23 26.37 27.77 30.67 27.83 28.07 27.40 22.07

F3 6.07 6.40 6.63 6.60 6.43 6.07 6.40 6.63 6.60 6.43

3.1. The genealogical tree and the resulting algebraic structure

In this, three times replicated, experiment we have three crossed factors,
“cement” (C) which is fixed with two levels, “photopolymerizer” (F ) which
is fixed with three levels and “time” (T ) that which is random with 2 levels
and nests the factor “disk” (D) which is random with 5 levels.

Therefore, as referred in the second section, the genealogical tree is

[C1, C2]
′ ⊗ [F1, F2, F3]

′ ⊗ [t1, t2]
′ ? [d1, d2, d3, d4, d5]

′ ? [r1, r2, r3]
′

and the CJA is

(A (2) ⊗ A (3) ⊗ A (2)) ? A (5) ? A (3).

This Genealogical Tree is, in fact, very practical since it allows us to get not
only the M family and the principal basis of the associated CJA, but also
the incidence matrices of the model. From the definitions of ⊗ and ?, easily
we get
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1. M1 = J2 ⊗ J3 ⊗ J2 ⊗ J5 ⊗ J3

2. M2 = J2 ⊗ J3 ⊗ I2 ⊗ J5 ⊗ J3

3. M3 = J2 ⊗ I3 ⊗ J2 ⊗ J5 ⊗ J3

4. M4 = J2 ⊗ I3 ⊗ I2 ⊗ J5 ⊗ J3

5. M5 = I2 ⊗ J3 ⊗ J2 ⊗ J5 ⊗ J3

6. M6 = I2 ⊗ J3 ⊗ I2 ⊗ J5 ⊗ J3

7. M7 = I2 ⊗ I3 ⊗ J2 ⊗ J5 ⊗ J3

8. M8 = I2 ⊗ I3 ⊗ I2 ⊗ J5 ⊗ J3

9. M9 = I12 ⊗ I5 ⊗ J3

10. M10 = I60 ⊗ I3

and

1. Q1 = 1
2J2 ⊗

1
3J3 ⊗

1
2J2 ⊗

1
5J5 ⊗

1
3J3

2. Q2 = 1
2J2 ⊗

1
3J3 ⊗ J̄2 ⊗

1
5J5 ⊗

1
3J3

3. Q3 = 1
2J2 ⊗ J̄3 ⊗

1
2J2 ⊗

1
5J5 ⊗

1
3J3

4. Q4 = 1
2J2 ⊗ J̄3 ⊗ J̄2 ⊗

1
5J5 ⊗

1
3J3

5. Q5 = J̄2 ⊗
1
3J3 ⊗

1
2J2 ⊗

1
5J5 ⊗

1
3J3

6. Q6 = J̄2 ⊗
1
3J3 ⊗ J̄2 ⊗

1
5J5 ⊗

1
3J3

7. Q7 = J̄2 ⊗ J̄3 ⊗
1
2J2 ⊗

1
5J5 ⊗

1
3J3

8. Q8 = J̄2 ⊗ J̄3 ⊗ J̄2 ⊗
1
5J5 ⊗

1
3J3

9. Q9 = I12 ⊗ J̄5 ⊗
1
3J3

10. Q10 = I60 ⊗ J̄3
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depending if we start with the basis of A (p) constituted by {Jp, Ip} or
{1

p
Jp, J̄p}. To get the incidence matrices of the model, it’s not difficult to

see that we only have to correspond the set of the usual incidence matrices
for the random sample, {1p, Ip}, and proceed in the same way. Thus,

1. X1 = 12 ⊗ 13 ⊗ 12 ⊗ 15 ⊗ 13

2. X2 = 12 ⊗ 13 ⊗ I2 ⊗ 15 ⊗ 13

3. X3 = 12 ⊗ I3 ⊗ 12 ⊗ 15 ⊗ 13

4. X4 = 12 ⊗ I3 ⊗ I2 ⊗ 15 ⊗ 13

5. X5 = I2 ⊗ 13 ⊗ 12 ⊗ 15 ⊗ 13

6. X6 = I2 ⊗ 13 ⊗ I2 ⊗ 15 ⊗ 13

7. X7 = I2 ⊗ I3 ⊗ 12 ⊗ 15 ⊗ 13

8. X8 = I2 ⊗ I3 ⊗ I2 ⊗ 15 ⊗ 13

9. X9 = I12 ⊗ I5 ⊗ 13

10. X10 = I60 ⊗ I3

11. X = [X1 X2 X3 X4].

The transition matrix can also be taken from the genealogical tree. For A (p)

the transition matrix is given by B =

[
p 0
1 1

]
, thus from both equations

(1) and (5), we get
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(43) B =




180 0 0 0 0 0 0 0 0 0

90 90 0 0 0 0 0 0 0 0

60 0 60 0 0 0 0 0 0 0

30 30 30 30 0 0 0 0 0 0

90 0 0 0 90 0 0 0 0 0

45 45 0 0 45 45 0 0 0 0

30 0 30 0 30 0 30 0 0 0

15 15 15 15 15 15 15 15 0 0

3 3 3 3 3 3 3 3 3 0

1 1 1 1 1 1 1 1 1 1




.

We have identified matrices B11, B21 and B22 accordingly to equation (6).
Matrix U defined in equation (7) is given by

(44)

U =




1

180
−

1

180
−

1

180

1

180
−

1

180

1

180

1

180
−

1

180
0 0

0
1

90
0 −

1

90
0 −

1

90
0

1

90
0 0

0 0
1

60
−

1

60
0 0 −

1

60

1

60
0 0

0 0 0
1

30
0 0 0 −

1

30
0 0

0 0 0 0
1

90
−

1

90
−

1

90

1

90
0 0

0 0 0 0 0
2

90
0 −

2

90
0 0

0 0 0 0 0 0
1

30
−

1

30
0 0

0 0 0 0 0 0 0
2

30
−

2

30
0

0 0 0 0 0 0 0 0
1

30
−

1

30

0 0 0 0 0 0 0 0 0 1




,

where we also identified U11, U12 and U22.
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It is trivial to write a procedure to obtain each matrix Mi, Qi, Xi, i =
1, ..., 10 and matrix B which illustrates the enormous advantage of the ge-
nealogical tree.

In order to calculate one matrix P, i.e., one common diagonalizer of for
all matrices Mi, i = 1, ..., w, it is easier to calculate the roots of matrices
Qi, i = 1, ..., w, which are the matrices Ai, i = 1, ..., w, referred in the
previous section. In fact, it is as easy as easy as calculating a singular
value decomposition of each matrix Qi. This can be made in most matrix
manipulation software packages where we can obtain matrices Ui, Si and Ti

such that UiSiT
′
i = Qi where Si is a diagonal matrix of the same dimension

as Qi with nonnegative diagonal elements in decreasing order, and U and
T are unitary matrices. Once the singular value decomposition is obtained,
we have that Ai is constituted by the first gi lines of the transpose of QiTi,
where gi is the trace of Qi. Observe that, in our case, these calculus are
even easier to carry out since Qi is symmetric, meaning that Ui = Ti and,
since Qi has eigenvalues 1 or 0, S has either 0 or 1 in the diagonal.

3.2. Estimation

3.2.1. Fixed effects

The fixed effects considered in the experiment were the cement, the
photopolymerizer and, therefore, the interactions between these.

Accordingly to the objectives explained before, we are interested in es-
timating differences between the different levels of cement ([1 (−1)]β2),
photopolymerizer (we chose [1 (−1) 0]β3 and [0 1 (−1)]β3) and interac-
tions (we chose [1 (−1) 0 0 0 0]β4 and [0 0 0 1 (−1) 0]β4). For this
purposes, choosing

C =




1 0 0 0 0 0 0 0 0 0 0 0

0 1 −1 0 0 0 0 0 0 0 0 0

0 0 0 1 −1 0 0 0 0 0 0 0

0 0 0 0 1 −1 0 0 0 0 0 0

0 0 0 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 −1 0




,
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from Theorem 4, we get that

Ĉβ =




10.5794

0.7650

3.9811

5.8700

−1.3683

1.8683




is the estimate of




µ

C1 − C2

F1 − F2

F2 − F3

C1F1 − C1F2

C2F1 − C2F2




.

To any other estimates, we just need to choose any other matrix C. We
note that only contrasts are estimable.

3.2.2. Random effects

The random effects and interactions considered in the experiment are,
in the design order, time (for which we want to test σ2

5), the
interaction time×cement (for which we want to test σ2

6), the interaction time
× photopolymerizer (for which we want to test σ2

7), the interaction time ×
cement× photopolymerizer (for which we want to test σ2

8), and disk (for
which we want to test σ2

9). Observe that there are no interactions between
nested factors and that we will also estimate σ2

10 = σ2 which correspond to
the technical error.

Since matrices Qi, i = 5, ..., 10, and matrices Ai, i = 5, ..., 10, are
already obtained, according to equations (23) and (25), we have

γ̃[2] =




S5

g5
=

tr(Q5yy′)

tr(Q5)

S6

g6
=

tr(Q6yy′)

tr(Q6)

S7

g7
=

tr(Q7yy′)

tr(Q7)

S8

g8
=

tr(Q8yy′)

tr(Q8)

S9

g9
=

tr(Q9yy′)

tr(Q9)

S10

g10
=

tr(Q10yy′)

trQ10




=




2.2162 × 103

1
= 2.2162 × 103

2.7534 × 103

1
= 2.7534 × 103

898.2608

2
= 449.1304

687.3381

2
= 343.6691

173.1027

48
= 3.6063

739.3067

120
= 6.1609



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which, according to expression (26) enables us to use matrix U22 to calculate

(45) U22γ̃[2] =




−7.1408

53.5501

3.5154

22.6709

−0.8515

6.1609




which is the estimate of




σ2
5

σ2
6

σ2
7

σ2
8

σ2
9

σ2
10




.

3.3. Testing

3.3.1. Fixed factors

The hypothesis of interest, at this point, are clear. Concerning

1. cement,

HC
0 : There is no difference between C1 and C2

vs.

HC
1 : There is a difference between C1 and C2,

2. photopolymerizer,

HF
0 : There are no differences between F1, F2 and F3

vs.

HF
1 : There is at least a difference between F1, F2 or F3,
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3. interactions cement×photopolymerizer

HCF
0 : There are no differences between any

interaction C1F1, C1F2, C1F3, C2F1, C2F2 and C3F3

vs.

HCF
1 : There is at least a difference between

interactions C1F1, C1F2, C1F3, C2F1, C2F2 or C3F3.

Accordingly to equation (10), these hypothesis are equivalent to

1. (for cement)

HC
0 : η2 = 0

vs.

HC
1 : η2 6= 0,

2. (for photopolymerizer)

HF
0 : η3 = 0

vs.

HF
1 : η3 6= 0,

3. (for interactions cement×photopolymerizer)

HCF
0 : η4 = 0

vs.

HCF
1 : η4 6= 0.
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A remark is due at this point. η2 is a scalar and ηi, i = 3, 4, has two
components. This is, off course, linked to the rank of the correspondent
matrix Ai, i = 2, 3, 4, and is something that can be found in any introductory
book of analysis of variance, see for example [11]. According to the definition
of effects and interactions, their sums has to be null, i.e., C1 + C2 = 0,
F1 + F2 + F3 = 0, and also

F1 F2 F3 sum

C1 C1F1 C1F2 C1F3 0

C2 C2F1 C2F2 C2F3 0

sum 0 0 0 0

.

This means that, for cement, there is only (2−1) = 1 effects “free” (or there
is 1 degree of freedom), for photopolymerizer there are (3 − 1) = 2 degrees
of freedom and for the interaction there are (2 − 1)(3 − 1) = 2 degrees of
freedom. This is the reason why, for the cements to be equal, we only need
to test if one contrast is null and for photopolymerizer and interactions we
need to test if two (any two linearly independent) contrasts are simultaneous
null.

The estimates of η1 (that concerns the mean value, and therefore
of no interest), η2, η3 and η4 which, geometrically, are estimates
of contrasts that belong to R(Q2), R(Q3) and R(Q4), can be obtained using
equation (12),

η1 = −283.8763, η2 = −6.8424,η3 =




48.2270

−65.6120




and η4 =




41.7091

7.7001


 .
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According to equations (33) and (34) and choosing

C = 1 for cement,(46)

C = I2 for photopolymerizer and(47)

C = I2 for the interaction between them,(48)

we have that, for a significance level α,

1. under HC
0 , 1

γ2
× 46.8180 should be smaller than the (1 − α) quantile

of the chi-square distribution with 1 degree of freedom,

2. under HF
0 , 1

γ3
×6.6308×103 should be smaller than the (1−α) quantile

of the chi-square distribution with 2 degrees of freedom,

3. under HCF
0 , 1

γ4
× 1.7989 × 103 should be smaller than the (1 − α)

quantile of the chi-square distribution with 2 degrees of freedom.

For practical reasons, in order to apply the theory of Section 2.3, we will
estimate the parameters γi, i = 2, 3, 4, or, in fact, use equation (35) and (39)
to generate samples for each γi, i = 2, 3, 4. Matrix B′

21U22 is




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0




= [c′1 c′2 c′3 c′4]
′,
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such that γj = c′jχ
2
(gj)

, j = 2, 3, 4, where g2 = 1, g3 = 2, g4 = 2. Having

chosen to generate ten thousand γj , j = 2, 3, 4, and α = 5%, we calculated
the percentage of times that we rejected HC

0 , HF
0 and HCF

0 . We expect
that, if H0 is true, then this percentage is near 5%. The results obtained
are the following.

C F CF

H0 rejections (%) 0% 67% 31%

from which we conclude that, at a significance level of 5%, there does not
exist statistical evidence to say that both cements difer from one another,
while there exists for photopolymerizers and interactions.

We give an illustration on Figure 1 of the interaction CF from
which we see the significance of this interaction since both lines are not
parallel.

Figure 1. Interaction CF
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3.3.2. Random factors

The hypothesis of interest in random factors are the following

1. for time

Ht
0: σ2

5 = 0

vs.

Ht
1: σ2

5 > 0

2. for the interaction cement×time

HCt
0 : σ2

6 = 0

vs.

HCt
1 : σ2

6 > 0

3. for the interaction photopolymerizer×time

HFt
0 : σ2

7 = 0

vs.

HFt
1 : σ2

7 > 0

4. for the interaction cement×photopolymerizer×time

HCFt
0 : σ2

8 = 0

vs.

HCFt
1 : σ2

8 > 0
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5. for disks

Hd
0 : σ2

9 = 0

vs.

Hd
1 : σ2

9 > 0.

To test these hypothesis, we use again the results in Section 2.3. In practical
sense, instead of calculating estimates of each σ2

i , i = 5, 6, 7, 8, 9, like we did

in equation (45), we intend to generate 1 − α confidence intervals for them
by generating ten thousand of each γi, i = 5, 6, 7, 8, 9 by the same procedure
used for fixed factors.

We reject each H0 at the significance level α if the (1 − α) confidence
interval for each σ2

i does not covers 0.

With α = 5% we obtained the confidence intervals

t Ct F t CFt d

lower bound −35178.08 −145.67 −390.33 6.03 −1.58

upper bound 24642.79 73877.66 548.44 886.74 −0.06

,

from which we decide that, at a significance level of 5%, there only exists
statistical evidence to say that there exists significant differences between
different levels of interaction CFt. In Figure 2 we can see the illustration of
this interaction.

3.4. Further analysis

In this section we intend to go through two decisions made in the previous
section. We will use this to show how to make a possible aggregation and
how to choose different contrasts to test.
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Figure 2. Interaction CFt

3.4.1. Aggregation

The first decision we would like to discuss concerns the disks used in the
experience. Since there is no difference between disks we will aggregate this
factor into the random error, i.e., we will, both,

1. consider the genealogical tree (A (2) ⊗ A (3) ⊗ A (2)) ? A (15),

2. aggregate A9 and A10 into the same matrix.

Following the entire procedure made in the previous sections, with this new
model we have the following results which conduct to the same decisions.

3.4.2. Estimates

Ĉβ yields, as expected, the same value

and
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U22γ̃ [2] =




−7.1408

53.5501

3.5154

22.5492

5.4312




which is the estimate of




σ2
5

σ2
6

σ2
7

σ2
8

σ2
9




3.4.3. Testing

C F CF

H0 rejections % 0% 67% 31%

and

t Ct F t CFt

lower bound −36340.37 −136.20 −371.70 5.94

upper bound 25804.10 74750.87 581.90 832.29

3.4.4. Contrasts

The second decision concerns the effects of photopolymerizers. From the
observation of data, it seems clear the the differences between photopoly-
merizers is due to the third level, while the first and second only differ
slightly. We would like to test this hypothesis.

Taking a look at matrix A4 we see that

A4 =


 0 a1 −a1 0 a1 −a1

−2a1 a1 a1 −2a1 a1 a1


⊗ 1′

30
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by which η4 = [η41 η42]
′ estimates the contrasts F2−F3 and −2F1+F2+F3.

We are now interested in testing the contrasts

1. F1 + F2 − 2F3 and

2. F1 − F2,

it being necessary to choose matrix C in equation (47) so that these new
contrasts can be written in terms of the new one. Since this a trivial exercise
of solving linear system, it’s easy to find out C = [ 3

2 − 5
6 ] for the first new

contrast and C = [− 1
2 − 1

2 ] for the second new contrasts.

Computing the same statistics with the same decision rule we have

F1 + F2 − 2F3 F1 − F2

H0 rejections % 73% 0%

which is in line with what we suspected.

4. Conclusions

Binary operations between algebras are extremely useful in defining models.
The concept of genealogical tree illustrates how the associated algebra is
constructed and enables us to easily conduct posterior analysis, as the, for
example, the aggregation made in the experiment.

As far as the experiment results, all estimation and hypothesis testing
was very easy to apply and the conclusions were in order to the experi-
menters intuition.
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