Download PDF - Inverting covariance matrices
ArticleOriginal scientific text
Title
Inverting covariance matrices
Authors 1, 2
Affiliations
- Institute of Mathematics, University of Rzeszów, Rejtana 16 A, P.O. Box 155, 35-959 Rzeszów, Poland
- Department of Statistics and Econometrics, Maria Curie-Skłodowska University, Pl. Marii Curie Skłodowskiej 5, 20-031 Lublin, Poland
Abstract
Some useful tools in modelling linear experiments with general multi-way classification of the random effects and some convenient forms of the covariance matrix and its inverse are presented. Moreover, the Sherman-Morrison-Woodbury formula is applied for inverting the covariance matrix in such experiments.
Keywords
multi-way classification, cross, hierarchical, balanced, unbalanced, covariance matrix, inverting
Bibliography
- G.H. Golub and C.F. Van Loan, Matrix Computation, Sec. Edition, J. Hopkins Univ. Press, Baltimore 1989.
- F.A. Graybill, Matrices with Application in Statistics, Sec. Edition, Wadsworth, Belmont, CA 1983.
- R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge Univ. Press, Cambridge 1985.
- J. Jiang, Dispersion matrix in balanced mixed ANOVA models, Linear Algebra Appl. 382 (2004), 211-219.
- J. Kleffe and B. Seifert, Computation of variance components by MINQUE method, J. Multivariate Anal. 18 (1986), 107-116.
- L.R. LaMotte, Notes on the covariance matrix of a random nested ANOVA model, Ann. Math. Statist. 43 (1972), 659-662.
- C.R. Rao, Linear Statistical Inference and Its Applications, Sec. Edition, J. Wiley, New York 1973.
- S.R. Searle, G. Casella and C. McCulloch, Variance Components, J. Wiley, New York 1992.
- J. Seely, Quadratic subspaces and completeness, Ann. Math. Statist. 42 (1971), 710-721.
- C. Stępniak, A note on estimation of parameters in linear models, Bull. Acad. Polon. Sc. Math., Astr. et Phys. 22 (1974), 1151-1154.
- C. Stępniak, Optimal allocation of units in experimental designs with hierarchical and cross classification, Ann. Inst. Statist. Math. A 35 (1983), 461-473.
- C. Stępniak, Inversion of covariance matrices: explicit formulae, SIAM J. Matrix Anal. Appl. 12 (1991), 577-580.
- C. Stępniak and M. Niezgoda, Inverting covariance matrices in unbalanced hierarchical models, J. Statist. Comput. Simul. 51 (1995), 215-221.
- D.M. VanLeeuwen, D.S. Birkes and J.F. Seely, Balance and orthogonality in designs for mixed classification models, Ann. Statist. 2 (1999), 1927-1947.
- R. Zmyślony and H. Drygas, Jordan algebras and Bayesian quadratic estimation of variance components, Linear Algebra Appl. 168 (1992), 259-275.