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Abstract

Stable hypothesis are hypothesis that may refer either for the fixed
part or for the random part of the model. We will consider such hy-
pothesis for models with balanced cross-nesting. Generalized F tests
will be derived. It will be shown how to use Monte-Carlo methods to
evaluate p-values for those tests.
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1. Introduction

We will derive generalized F tests for stable hypothesis on models with
balanced cross-nesting. Such hypothesis are named since they are hypothesis
for sets of factors all of which may or may not have fixed effects. Thus these
hypothesis refer either to the fixed part or to the random part of the model.
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To formulate stable hypothesis we will consider the algebraic structure of
the model. As we shall see these hypothesis are hypothesis of nullity for
parameters. When the hypothesis refer to the fixed [random] part of the
model the parameter is proportional to a non-centrality parameter [equals
a variance components].

Generalized F tests were introduced by Michalsky & Zmyslony (see [1]
and [2]). The statistics of these tests are the quocients of the positive by the
negative part of quadratic unbiased estimators of parameters whose nullity
is being tested.

Superscripts will be used to indicate the number of components of vec-
tors, all s components of 1s will be 1. As for matrices, Ts will be the s
order identity matrix and Is will be obtained deleting the first row, equal to
1√
s
1s>, of an s× s orthogonal matrix Ps. Kronecker matrix product will be

indicated by
⊗

.
We write Zw ∼ N (ηw, C) when Zw is normal with mean vector E(Zw) =

ηw, variance-covariance matrix C and k ∼ γχ2
g [∼ γχ2

g,δ] when k is the
product by γ of a chi-square with g degrees of freedom [and non-centrality
parameter δ].

2. Models

We assume that there are L groups of u1, .., uL factors. For convenience we
take cl(−1) = 0, cl(0) = 1 and write al(1) for the number of levels of the
first factor in the l-th group, l = 1, ..., L. If ul > 1, each of the al(1) levels
of the first factor in the l-th group nests al(2) levels of the second factor
and so on, treating interactions between fixed and random effects factors as
random. When ul = 1 there is no nesting for the l-th group of factors. Then
the h-th factor in the l-th group will have cl(h) =

∏h
k=1 al(k) levels each one

for one combinations of levels of the first h factors in the group, h = 1, ..., ul,
l = 1, ..., L. Each of these levels nests bl(h) = cl(ul)/cl(h) level combinations
for the remaining factors in the l-th group h = 1, ..., ul, l = 1, ..., L. Taking
r replicates for each of the w =

∏L
l=1 cl(ul) level combinations for all factors

we will have n = wr observations. Let m(aL, bL) be the number of al <
bl, l = 1, ..., L. Non null vectors of

(1) Γ =
{
hL; hl = 0, ..., ul, l = 1, ..., L

}
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label single factors when m(0L, hL) = 1, or sets of factors belonging to
distinct groups when m(0L, hL) > 1. For instance if the non null compo-
nents of hL are h2 = 1 and h3 = 2 the first factor in the second group
and the second factor in the third group will be labeled. For each of
the c(hL) =

∏L
l=1 cl(hl) level combinations for the factor labeled by hL,

bl(h) = n/c(hL) = r
∏L

l=1 bl(hl) observations are taken.
Since there are no interactions between factors in the same groups we can

use the hL ∈ Γ to index the model parameters. Firstly c(0L) =
∏L

l=1 cl(0) =
1 and so we can represent the general mean value µ by β(0L)s. Nextly, if
m(0L, hL) = 1[> 1], the components of β(hL)c(hL) will be the effects of the
factor [interactions between the factors] labeled by hL.

If all factors labeled by hL have fixed effects, β(hL)c(hL) will be a fixed
vector while in the second case it will be random vector with null mean
vector. Taking

(2) X(hL) =

[
L⊗

l=1

(
Icl(hl)

⊗
1bl(hl)

)]⊗
1r, hL ∈ Γ,

we have, (see [1]), for the observations vector Y n the model

(3)

Y n =
∑

hL∈Γ

X
(
hL

)
β
(
hL

)c(hL)
+ en

= µn +
∑

hL∈Γr

X
(
hL

)
β
(
hL

)c(hL)
+ en,

where en is an normal error vector with null mean vector and vectors
β(hL

)c(hL), hL ∈ Γf and en are independent. Γr is the set of hL ∈ Γ
that label one or more random effects. Now

(4) µn = E
(
Y n

)
=

∑

hL∈Γf

X
(
hL

)
β
(
hL

)c(hL)
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with hL ∈ Γf = Γ − hL ∈ Γr, will constitute the fixed part of the model,
the remaining terms in the model will constitute it’s random part. Stable
hypothesis will be hypothesis on parameters θ(hL

0 ) that may have a common
formulation when hL

0 ∈ Γf and when hL
0 ∈ Γr.

3. Stable hypothesis

We write aL < bL when aL ≤ bL, l = 1, ..., L and for at least one l0, al0 < bl0 .
With

(5) D
(
hL

0

)
=

{
kL : hL

0 < kL; kL ∈ Γ
}

let us assume that:

(a)

β
(
kL

)c
(
kL

)
∼ N

(
0c

(
kL

)
, σ2

(
kL

)
I
c
(
kL

)
)

,

kL ∈ D
(
hL

0

)
; D

(
hL

0

)
⊂ Γr;

(b) en ∼ N (
0n, σ2In

)
;

while

(c)

β
(
hL

0

)c
(
hL
0

)
may be fixed or have distribution

N
(

0c
(
hL
0

)
, σ2

(
hL

0

)
I
c
(
hL
0

)
)

.

The random vectors considered above are assumed to be independent. These
assumptions only refer to part of the vectors in the model so that they are
less stringent then the usual ones, (see [1]). We point out that (c) covers
both cases: hL

0 ∈ Γf and hL
0 ∈ Γr. Taking
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(6)





Q(hL) =

{
L⊗

l=1

[
Icl

(hl − 1)
⊗

Tal(hl)

⊗(
1√

bl(hl)
1bl(hl)>

)]}
⊗

⊗ (
1√
r
1r>

)
, hL ∈ Γ

g(hL) =

(
L∏

l=1

cl(hl)− cl(hl − 1)

)
, hL ∈ Γ

we get, (see [1]),

(7)





S
(
kL

)
= ‖Q

(
kL

)
Y n‖2 ∼ γ

(
kL

)
χ2

g(kL)
, kL ∈ D

(
hL

0

)

S
(
hL

0

)
= ‖Q

(
hL

0

)
Y n‖2 ∼ γ

(
hL

0

)
χ2

g(hL
0 ),δ(hL

0 )
, hL

0 ∈ Γ

with

(8)





γ
(
hL

)
= σ2 +

∑
h′L:hL≤h′L b

(
h′L

)
σ2

(
h′L

)
, hL ∈ Γ

δ
(
hL

0

)
=

1
γ
(
hL

0

)‖ηg(hL
0 )

0 ‖2, hL
0 ∈ Γ, hL

0 ∈ Γf

where

(9) ηg(hL
0 )

0
= E

(
Q

(
hL

0

)
X

(
hL

0

)
β
(
hL

0

)c(hL
0 )

)

while Q(hL
0 ) is defined in expression (6).
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Thus we get

Proposition 1. Hypothesis H0(hL
0 ) : ξ(hL

0 ) = 0 with

ξ
(
hL

0

)
= σ2

(
hL

0

)
+
‖ηg(hL

0 )
0 ‖2

g
(
hL

0

)

is stable.

Proof. It suffices to point out that, when hL
0 ∈ Γf , σ2(hL

0 ) = 0 and so

ξ
(
hL

0

)
=
‖ηg(hL

0 )
0 ‖2

g
(
hL

0

) ,

while, when hL
0 ∈ Γr, η

g(hL
0 )

0 = 0g(hL
0 ) and so ξ(hL

0 ) = σ2(hL
0 ).

4. Tests

Let Ä(hL)+ [Ä(hL)−] be the sets of the kL ∈ Γ with m(hL, kL) is even [odd]
such that

(10) h0,l ≤ kl ≤ min {h0,l;ul} , l = 1, ..., L.

then, (see [1]),

(11) σ2
(
hL

0

)
=

1
b(hL

0 )


 ∑

kL∈Ä(hL
0 )+

γ
(
kL

)
−

∑

kL∈Ä(hL
0 )−

γ
(
kL

)

 .

Now, according to expression (3) in the previous section, we have the mean
values

(12)





E

(
S(kL)
(kL)

)
= γ

(
kL

)
, kL ∈ D

(
hL

0

)

E

(
S(hL

0 )
g(hL

0 )

)
= γ

(
hL

0

)
+
‖η

0
g(hL

0 )‖2

g(hL
0 )

, hL
0 ∈ Γ
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Now we also have

Proposition 2. The

ξ̃
(
hL

0

)+
=

∑

kL∈Ä(hL
0 )+

E

(
S(kL)
g(kL)

)

and

ξ̃
(
hL

0

)−
=

∑

kL∈Ä(hL
0 )−

E

(
S(kL)
g(kL)

)

are the positive and negative parts of an unbiased quadratic estimator for
ξ(hL

0 ).

Proof. According to (12) we have

∑

kL∈Ä(hL
0 )+

E

(
S(kL)
g(kL)

)
−

∑

kL∈Ä(hL
0 )−

E

(
S(kL)
g(kL)

)

= E

(
S(hL

0 )
g(hL

0 )

)
+

∑

kL∈Ä(hL
0 )+/hL

0

E

(
S(kL)
g(kL)

)
−

∑

kL∈Ä(hL
0 )−

E

(
S(kL)
g(kL)

)

= γ
(
hL

0

)
+
‖η

0
g(hL

0 )‖2

g(hL
0 )

+
∑

kL∈Ä(hL
0 )+/hL

0

γ
(
kL

)
−

∑

kL∈Ä(hL
0 )−

γ
(
kL

)

= σ2
(
hL

0

)
+
‖η

0
g(hL

0 )‖2

g(hL
0 )

= ξ
(
hL

0

)
.

which establishes the thesis.
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Thus we can use, (see [2] and [3]),
ξ̃(hL

0 )+

ξ̃(hL
0 )−

as the statistic of a generalized

F test for H0(hL
0 ). In Ä(hL

0 )+ or Ä(hL
0 )− there are, (see [1]), 2m(hL

0 ,uL)−1

vectors. The S(kL) and g(kL) with kL ∈ Ä(hL
0 )+ or Ä(hL

0 )− from 1 to a or
from a + 1 to 2a, respectively. The test statistic may written as

(13) F
(
hL

0

)
=

a∑

j=1

Sj

gj

2a∑

j=a+1

Sj

gj

.

Let us now generate N sets U1,i, ..., U2a,i, i = 1, ..., N of independent chi-
squares with g1, ..., g2a degrees of freedom. If N0 is the number of the

(14) Zi =

a∑

j=1

Sj

Uj,i

2a∑

j=a+1

Sj

Uj,i

, i = 1, ..., N

lesser then F(hL
0 ),

N0

N
may be used to evaluate the p-value of the test,

(see [4]).
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