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Abstract

In this paper we will precisely analyze the nearest neighbor method
for different dissimilarity measures, classical and weighed, for which
methods of distinguishing were worked out. We will propose looking
for weights in the space of discriminant coordinates. Experimental re-
sults based on a number of real data sets are presented and analyzed
to illustrate the benefits of the proposed methods. As classical dis-
similarity measures we will use the Euclidean metric, Manhattan and
post office metric. We gave the first two metrics weights and now these
measures are not metrics because the triangle inequality does not hold.
Howeover, it does not make them useless for the nearest neighbor clas-
sification method. Additionally, we will analyze different methods of
tie-breaking.
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1. Introduction

Suppose that a training sample z = (z1, . . . , zN ) has been collected by
sampling from a population P consisting of K subpopulations or classes
G1, . . . , GK . The ith observation in z is a pair denoted by zi = (xi, yi)
where xi is a p-dimensional feature vector and yi is the label for recording
class membership. The corresponding pair for an unclassified observation is
denoted by z0 = (x0, y0). In this case, x0 is observed, whereas the class label
y0 is unobserved. The object of classification is to construct a classification
rule for predicting the membership of an unclassified feature vector x0 ∈ P .
An automated classifier can be viewed as a method of estimating the pos-
terior probability of membership in Gk. The classification rule assigns x0

to the group with the largest posterior probability estimate. We denote the
posterior probability of membership in Gk by

pk(x0) = P (y0 = k|x0).

One of the important non-parametric classifiers is a J-nearest neighbor
classifier (J-NN classifier). The estimator of pk(x0) produced by the
J-NN classifier is the sample proportion of the J-nearest neighbors
belonging to Gk:

(1) p̂k(x0) =
1
J

N∑

i=1

I(ρ(x0,xi) ≤ dJ(x0))I(yi = k), k=1,. . . ,K,

where k = 1, . . . , K, I(A) is the indicator function of the event A, dJ(x0)
is the J-th distance from the point x0 to the points x1, . . . ,xN and ρ is a
given measure. Usually, ρ is an Euclidean metric

(2) ρ2(x0,xi) =‖ x0 − xi ‖2= (x0 − xi)′(x0 − xi).

If the features are correlated, we can use the Mahalanobis distance. If
we have a tie among the largest estimates of group membership, various
methods of tie-breaking can be used as described in Section 3.1.

The great effectiveness of the J-NN rule when the number of
observations increases to infinity is well known [2]. However, in most real
situations, the number of available observations is usually small, which
often leads to dramatic degradations of the nearest neighbor method classi-
fication accuracy. The nearest neighbor rule is a suboptimal procedure. Its
use will usually lead to an error rate greater than the minimum possible, the
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Bayesian rate. However, with a very large number of samples (patterns),
the error rate is never worse than twice the Bayes rate. On the other hand,
unlike the Bayessian classifier, the nearest neighbor rule does not require es-
timation of the conditional probability density function for each class, so it
is easier to implement. It was proved in [3] that even though we have rules,
such as the J-nearest neighbor rule, that are universally consistent (i.e., they
asymptotically provide optimal performance for any distribution), their fi-
nite sample performance can be extremely bad for some distributions. This
explains the increasing interest in finding a measure of dissimilarity that
helps improve the nearest neighbor method classification performance in
small data sets. The Euclidean distance (2) is sensitive to change in scale.
A good example of this sensitivity can be found in [10]. So to overcome
this problem each variable could be scaled by dividing it by the range or
standard deviation. This method will remove the dependence on the units
of measurement, but it creates other problems described by [10]. We scaled
variables differently, viz. we used weights to scale variables. Furthermore,
we will assume that features are poorly correlated and as measures of dis-
tances we will use measures like (2) and weighed measures.

In Section 2, we will define dissimilarity measures and we will clas-
sify them comparatively, and give some equivalence relation among these
measures. Also in this section, we will describe the proposed method
of weights introduction. Section 3 is devoted to research on the
efficiency of the proposed method on real data sets, and on methods for
tie-breaking in the nearest neighbor method. The last section is devoted to
reviewing on the methods that were used.

2. Measures of dissimilarity

Information on measures of dissimilarity can be found in [6] and [7]. On the
basis of these monographs and [10] we can define some class of functions.

Definition 1. Function ρ : X ×X → R is called a measure of dissimilarity
if:

1. ∀x,y ∈ X ρ(x,y) = ρ(y,x),

2. ∀x,y ∈ X ;x 6= y ρ(x,y) > 0,

3. ∀x ∈ Xρ(x,x) = 0.
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So it is a symmetrical non-negative function. From the definition of a metric
we delete the triangle inequality. Apparently this inequality is not needed
because we are interested only in ranking distances to point x0 and not in
distances between all points. The following are the most common measures
of dissimilarity between points x and y:

• ρ1(x,y) =
p∑

i=1

|xi − yi|,

ρ̄2(x,y) =

√
p∑

i=1
(xi − yi)2,

• ρ̃2(x,y) =
p∑

i=1

(xi − yi)2,

• ρ3(x,y) =
p∑

i=1

|xi − yi|
1 + |xi − yi|

1
2i

,

• ρ4(x,y) =





ρ̃2(0,y) + ρ̃2(x, 0), for x 6= y,

0, for x = y,

• ρ5(x,y) =





0, for x = y,

ρ̄2(x,y), for x 6= y and x , y are lying on a
straight line with 0 point,

ρ̄2(0,y) + ρ̄2(x, 0), otherwise,

• ρ6(x,y) = (x− y)′S−1
y (x− y),
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• ρ7(x,y) =

{
p∑

i=1

|xi − yi|α
} 1

α

,

• ρ8(x,y) =
p∑

i=1

|xi − yi|
xi + yi

(for positive variables only),

• ρ9(x,y) = 1−
2

p∑
i=1

min(xi, yi)

p∑
i=1

(xi − yi)
(also for positive variables only).

Some of these measures of dissimilarity are metrics, e.g., ρ1 (city-block
metric or Manhattan metric), ρ̄2 (Euclidean metric), ρ3 (Frechét metric),
ρ4 (post office metric), ρ5 (subway metric). Measure ρ6 is the so-called
Mahalanobis distance, where Sy is the estimator of covariance matrix class
of observation y (much information about this distance can be found in [4].
Minkowski metric (ρ7) includes both the Euclidean and city-block metric.
ρ8 is Canberra metric and ρ9 is Czekanowski coefficient.

Remark 1. Each metric is a measure of dissimilarity.

In most cases it turns out that not all features have the same importance
in classification. It seems reasonable in this case to respect this fact giving
weights to features which effect the classification. Also, if features are mea-
sured on different scales, giving weights should improve the performance of
classification. We also want the functions thus changed to remain measures
of dissimilarity. We proposed the following theorem:

Theorem 1. If d(x, y) is a metric in R, then

d̃(x,y) =
n∑

i=1

wid(xi, yi)

is a metric in Rn, whenever wi ≥ 0 ∀i and ∃i wi 6= 0.
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Proof. Let us check if all conditions in the definition of a metric are fulfilled.

1o d̃(x,x) =
n∑

i=1
wid(xi, xi) = 0,

2o d̃(x,y) =
n∑

i=1
wid(xi, yi) =

n∑
i=1

wid(yi, xi) = d̃(y,x),

3o if x 6= y then d̃(x,y) =
n∑

i=1
wid(xi, yi) ≥

n∑
i=1

min
1≤j≤n

[wjd(xj , yj)]

≥ n min
1≤j≤n

[wjd(xj , yj)] ≥ 0, because ∀1 ≤ j ≤ n wjd(xj , yj) ≥ 0,

4o d̃(x, z) =
n∑

i=1
wid(xi, zi) ≤

n∑
i=1

wi[d(xi, yi) + d(yi, zi)]

=
n∑

i=1
wid(xi, yi) +

n∑
i=1

wid(yi, zi) = d̃(x,y) + d̃(y, z).

Corollary 1. If d(x, y) is a dissimilarity measure in R, then

d̄(x,y) =
n∑

i=1

wid(xi, yi)

is a dissimilarity measure in Rn, where wi ≥ 0 ∀i and ∃i wi 6= 0.

In this way we can create varied measures of dissimilarity, but not all
measures of dissimilarity can change the result of classification. Therefore,
we will introduce a congruent relation between dissimilarity measures.

Definition 2. Given the dissimilarity measure ρ, a sequence
{xk,xa2 , . . . ,xan} with ai ∈ {1, . . . , n}\{k}, such that, whatever i, j with
ai < aj implies ρ(xk,xai) ≤ ρ(xk,xaj ) will be a system D(ρ,xk) of points
in the set E = {x1, . . . ,xn} with respect to the dissimilarity measure ρ.

In these sequence of points dissimilarity ρ increases when we take the
next point.
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Definition 3. The dissimilarity measures ρ1 and ρ2 are congruent if

∀n ≥ 3 ∀xi i = {1, . . . , n} D(ρ1,xi) = D(ρ2,xi).

Theorem 2. The congruence relation ϕ between dissimilarity measures is
an equivalence relation.

Proof.

1o Reflexivity
ϕ(ρ1, ρ1) = ϕ(ρ1, ρ1),

2o Symmetry

ϕ(ρ1, ρ2) = ϕ(ρ2, ρ1),

3o Transitivity

ϕ(ρ1, ρ2) ∧ ϕ(ρ2, ρ3) =⇒ ϕ(ρ1, ρ3).

Let us fix i.

(D(ρ1,xi) = D(ρ2,xi)) ∧ (D(ρ2,xi) = D(ρ3,xi))

=⇒ D(ρ1,xi) = D(ρ3,xi).

As an equivalence relation, it divides the set of measures of dissimilarity into
classes of equivalence. Only measures of dissimilarity belonging to different
classes of abstraction can change classifications. To show that two measures
of dissimilarity are not congruent, it is sufficient to find three points in
R2 and prove that the first of these measures generates a system of points
different from the other.

Example 1. We will show that the measures of dissimilarity

ρ1(x,y) =
n∑

i=1

|xi − yi|



224 T. Górecki

and

ρ2(x,y) =

n∑
i=1

|xi − yi|

1 +
n∑

i=1
|xi − yi|

are congruent. We have to show that ∀x D(ρ1,x) = D(ρ2,x). Suppose that
for some y, z

ρ1(x,y) ≤ ρ1(x, z).

Then

ρ2(x,y) =
ρ1(x,y)

1 + ρ1(x,y)
≤ ρ1(x, z)

1 + ρ1(x, z)
= ρ2(x, z),

because ∀0 < x < y

x

1 + x
− y

1 + y
=

x− y

(1 + x)(1 + y)
< 0.

We have shown that for any x measures of dissimilarity ρ1, ρ2 produce the
same system of points, i.e., they are congruent.

Example 2. We will show that the measures of dissimilarity

ρ1(x,y) =
n∑

i=1

|xi − yi|

and

ρ2(x,y) =
n∑

i=1

(xi − yi)2

are not congruent.
Suppose that x,y, z ∈ R2 and to simplify calculations (without loss of

generality) suppose that x = (0, 0). Then the following condition has to be
fulfilled

{
ρ1(x,y) < ρ1(x, z)

ρ2(x,y) > ρ2(x, z)
or

{
ρ1(x,y) > ρ1(x, z)

ρ2(x,y) < ρ2(x, z),
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{ |y1|+ |y2| < |z1|+ |z2|
y2
1 + y2

2 > z2
1 + z2

2

or

{ |y1|+ |y2| > |z1|+ |z2|
y2
1 + y2

2 < z2
1 + z2

2 .

Now suppose that z = (3, 4). We have

{ |y1|+ |y2| < 7

y2
1 + y2

2 > 25
or

{ |y1|+ |y2| > 7

y2
1 + y2

2 < 25.

A graphical solution of this inequalities system is presented in Figure 1.

(3,4)

(3,-4)

(4,3)

(4,-3)

(-3,-4)

(-4,-3)

(-4,3)

(-3,4)

| | | |y y1 2+ =7

y y1 2

2 2+ =25

y1

y2

(-3,4)

(-4,3)

Figure 1. The shaded area is the set of plane points in which the measures
of dissimilarity under consideration are different.
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For example let us consider point y = (0, 6) for which we have:

ρ1(x,y) = 6, ρ1(x, z) = 7,

ρ2(x,y) = 36, ρ2(x, z) = 25,

D(ρ1,x) = {x,y, z},

D(ρ2,x) = {x, z,y}.

These measures of dissimilarity are not congruent for some sets of
points since they produce different systems of points and they give distinct
classifications through the nearest neighbor method.

Example 3. We will show that the measures of dissimilarity

ρ1(x,y) =
n∑

i=1

|xi − yi|

and

ρ2(x,y) =





0, for x = y,

√
x2

1 + x2
2 +

√
y2
1 + y2

2, for x 6= y

are not congruent. Again suppose that x = (0, 0). One of the following
conditions has to be fulfilled:




|y1|+ |y2| < |z1|+ |z2|
√

y2
1 + y2

2 >
√

z2
1 + z2

2

or




|y1|+ |y2| > |z1|+ |z2|
√

y2
1 + y2

2 <
√

z2
1 + z2

2
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{ |y1|+ |y2| < |z1|+ |z2|
y2
1 + y2

2 > z2
1 + z2

2

or

{ |y1|+ |y2| > |z1|+ |z2|
y2
1 + y2

2 < z2
1 + z2

2

as in the situations in the previous example.

Example 4. We will show that the measures of dissimilarity

ρ1(x,y) =
n∑

i=1

(xi − yi)2

and

ρ2(x,y) =





0, for x = y,

√
x2

1 + x2
2 +

√
y2
1 + y2

2, for x 6= y

are not congruent. Suppose that x = (3, 3). One of the following conditions
has to be fulfilled:





(y1 − 3)2 + (y2 − 3) < (z1 − 3)2 + (z2 − 3)2

√
18 +

√
y2
1 + y2

2 >
√

z2
1 + z2

2 +
√

18

or




(y1 − 3)2 + (y2 − 3) > (z1 − 3)2 + (z2 − 3)2

√
18 +

√
y2
1 + y2

2 <
√

z2
1 + z2

2 +
√

18.

Now suppose that z = (3, 4), we have

{
(y1 − 3)2 + (y2 − 3) < 1

y2
1 + y2

2 > 25
or

{
(y1 − 3)2 + (y2 − 3) > 1

y2
1 + y2

2 < 25.
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A graphical solution of this inequalities system is presented in Figure 2.

(3,4)

(4,3)

y y1 2

2 2+ =25

y1

y2 ( -3) +( -3) =1y y1 2

2 2

Figure 2. The shaded area is the set of plane points in which the
measures of dissimilarity under consideration are different.

For example let us take y = (1, 3).

ρ1(x,y) = 4, ρ1(x, z) = 1,

ρ2(x,y) =
√

18 +
√

10, ρ1(x, z) =
√

18 +
√

25,

D(ρ1,x) = {x, z,y},
D(ρ2,x) = {x,y, z}.

Remark 2. All the foregoing considerations can be moved on Rn, n > 2.
It will suffice to put 0 as the remaining n − 2 coordinates of points, to fix
on 0, i.e., to consider only points on the plane.

Similarly, we can show that for some systems of weights, weighed
measures of dissimilarity are not congruent. In a general case, the following
theorem holds.
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Theorem 3. For any system of weights {wi : wi ≥ 0 , ∃ i : wi > 0} such
that ∃i 6= j wi 6= wj the measures of dissimilarity

ρ̄1(x,y) =
n∑

i=1

wi|xi − yi|

and

ρ̄2(x,y) =
n∑

i=1

wi(xi − yi)2

are not congruent.

Proof. It will suffice to limit ourselves to R2 and to three points. Addi-
tionally, without loss of generality, let us assume that w1 ≥ w2 ≥ . . . ≥ wn,
x = (0, 0) and w1 6= w2. We want the following condition to be fulfilled:

{
w1(x1 − y1)2 + w2(x2 − y2)2 < w1(x1 − z1)2 + w2(x2 − z2)2

w1|x1 − y1|+ w2|x2 − y2| > w1|x1 − z1|+ w2|x2 − z2|.

Dividing both inequalities by w1 we obtain (assuming w1 6= 0)

{
(x1 − y1)2 + w(x2 − y2)2 < (x1 − z1)2 + w(x2 − z2)2

|x1 − y1|+ w|x2 − y2| > |x1 − z1|+ w|x2 − z2|,

where w = w2
w1

and 0 < w < 1

{
y2
1 + wy2

2 < z2
1 + wz2

2

|y1| > |z1|+ w|z2| − w|y2|.

Now let us suppose that y1 ≥ 0. We start by replacing, in the second of the
last expressions, inequality by equality and, next modifying y1 so that again
we have an equality.
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{
y2
1 + wy2

2 < z2
1 + wz2

2

y1 = |z1|+ w|z2| − w|y2|,

[|z1|+ w(|z2| − |y2|)]2 + wy2
2 < z2

1 + wz2
2 .

Let us suppose that y2 = 0. We have

(|z1|+ w|z2|)2 < z2
1 + wz2

2 ,

z2
1 + 2w|z1||z2|+ w2z2

2 < z2
1 + wz2

2 ,

2|z1||z2|+ wz2
2 < z2

2 .

Now let us suppose that z1 = 0. We have

z2
2w − z2

2 < 0,

z2
2(w − 1) < 0, ∀z2 6= 0.

Therefore let us suppose that z2 = 2. Then

y1 = |z1|+ w|z2| − w|y2| = 2w.

Now we can modify y1 so that the inequalities are fulfilled.
Let us assume

y
′
1 = εy1,

where ε > 1. Hence we have

y
′
1 > |z1|+ w|z2| − w|y2|.
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Additionally, the following condition has to be fulfilled:

(y
′
1)

2 + wy2
2 < z2

1 + wz2
2 ,

(εy1)2 + wy2
2 < z2

1 + wz2
2 ,

ε2 <
z2
1 + wz2

2 − wy2
2

y2
1

,

ε <

√
z2
1 + wz2

2 − wy2
2

y2
1

,

ε <

√
0 + 4w − 0

4w2
,

ε <

√
w

w
= ε∗.

That is ε ∈ (1, ε∗) and

x = (0, 0),

y = (2wε, 0),

z = (0, 2).

We see that for all weights we can find points for which dissimilarity
measures give different systems of points. To illustrate the theorem we
present the following example.

Example 5. We now present a few examples of systems of weights for
weighed measures of dissimilarity and systems of points in these measures.
We assume ε = ε∗ − 0.0001. Results are presented in Table 1.
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Table 1. Systems of weights and sequences of points for weighed measures of
dissimilarity.

w1, w2 w ε∗ y1 ρ̄2(x,y) ρ̄2(x, z) ρ̄1(x,y) ρ̄1(x, z) D(ρ̄2,x) D(ρ̄1,x)
2
3 , 1

3 0.50 1.41 1.41 1.3331 1.3333 0.94 0.67 x,y, z x, z,y
3
4 , 1

4 0.33 1.73 1.15 0.99 1.00 0.87 0.50 x,y, z x, z,y
4
5 , 1

5 0.25 2.00 1.00 0.79 0.80 0.80 0.40 x,y, z x, z,y
2
3 , 1

2 0.75 1.57 1.73 1.99 2.00 1.15 1.00 x,y, z x, z,y

7, 2 0.29 1.87 1.07 7.9991 8.00 7.48 4.00 x,y, z x, z,y

50, 31 0.62 1.27 1.57 123.98 124.00 78.70 62.00 x,y, z x, z,y

One of the ways to introduce weights is to replace our space with
a space of discriminant coordinates as described in [10], which uses the term
”discriminant coordinates” since the term ”canonical variates” is reserved
for the canonical correlation analysis. The measure of relative importance
(influence on classification) of the ith discriminant coordinate is

(3)
λi

s∑
j=1

λj

i = 1, . . . , s,

where λi are equivalent eigenvalues. The ratios in expression (3) are used
as weights in weighed measures of dissimilarity.

Another approach to finding weights is proposed in [9], namely: the
following measure

ρ(x,y) =
p∑

i=1

wci(xi − yi)2,

where c is the class containing y. If all wci are equal to 1, this measure is
an Euclidean distance but if the weights are the inverse of the variances
in each dimension, the Mahalanobis distance is obtained. To find weights
the authors of [9] used a fractional programming procedure. In general this
measure does not fulfil Definition 1 because ρ(x,y) may be different from
ρ(y,x) when x and y belong to different classes so the symmetry condition
does not hold.



Effect of choice of dissimilarity measure ... 233

3. Research

3.1. Methods of tie-breaking
Using the nearest neighbor method we often are not certain into which class
we should locate a new observation. This happens if for two (or more) classes
posterior probabilities are the same, i.e.,

∃j max
i6=j

P (yk = i|xk) = P (yk = j|xk).

In this case tie-breaking may be used. Here we propose the following two
methods:

• When we have a tie we add the next neighbor and if we still have a tie
we add the next until a tie-break is obtained.

• We choose the class in which the nearest neighbor is located.

Theorem 4. To solve a tie using the first strategy when the J-nearest neigh-
bor is used for g classes, we need at most





J
2 (g − 2) + 1, for even J,

J−1
2 (g − 2), for odd J

new neighbors.

Proof. Let us assume that we have a tie for the J-nearest neighbor method
and g classes. The worst case is present if the maximum is achieved for two
classes and these classes include all J neighbors (apart from odd J). In this
case for even J we have to add at most J

2 (g − 2) + 1 new neighbors and for
odd J

J − 1
2

(g − 2) =
J

2
(g − 2) + 1− g

2
.
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Theorem 5. When we use the first method of tie-breaking we can be assured
that this method will work for the J-nearest neighbor method if

J ≤
⌈

N

g

⌉
∗ 2− 1.

Proof. Again we have the worst situation when there are two classes with a
maximum a posteriori probability. Then we have to add the next neighbors
to break a tie and we cannot exceed N . Let J∗ be the maximum J for which
we can always break a tie with the first strategy. Then in each class (from
g classes) it will be

⌈
N
g

⌉
observations, i.e., in classes with the maximum a

posterior likelihood it will be all in all
⌈

N
g

⌉
∗ 2 observations. Such a value

of J∗ does not break the tie if N
g is a natural number. Assuming

J∗ =
⌈

N

g

⌉
∗ 2− 1

we can be assured that all ties will break.

Example 6. Let us consider the following case. Let N = 50 be the number
of observations and let the number of classes be equal to 7. We will consider
two cases:

a) J = 6,

b) J = 7.

Hence, to break the tie we need at most

a) 6
2(7− 2) + 1 = 16,

b) 7−1
2 (7− 2) = 15

new observations. However, if we want to be certain that this strategy will
work we have to fix J at most at

J =
⌈

50
7

⌉
∗ 2− 1 = 15.
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To compare these methods of tie-breaking we carried out some experiments.
These experiments are presented later in Section 3.3.

3.2. Data sets
Several standard real datasets from [1] have been used (”glass”,
”ionosphere”, ”iris” and ”thyroid”). We used also the dataset ”beetles”
from [7], the dataset ”school” from [5], the dataset ”irradiation” from [8].
The dataset ”turtles” is from the database of the Statistica 6.0 Pl program.
Information about theses datasets are presented in Table 2.

Table 2. Information about real datasets.

Name Number of Number of Number of Number of

features classes instances in classes all instaces

beetles 2 3 21,21,22 64

blood 3 4 20,20,20,20 80

crude-oil 5 3 7,11,38 56

fish 4 3 12,12,12 36

football 6 3 30,30,30 90

glass 9 6 70,76,17,139,29 214

ionosphere 34 2 225,126 351

iris 4 3 50,50,50 150

irradiation 3 4 6,14,15,10 45

school 2 3 31,28,26 85

thyroid 5 3 150,35,30 215

turtles 6 2 24,24 48

3.3. Comparison of methods
We carried out experiments to compare the behavior of the nearest neighbor
method for various measures of dissimilarity. We also wanted to compare
two strategies of tie-breaking. Experimental results are presented in
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Table 3 and 4. Table 3 includes results of experiments with the bootstrap
error estimation (50 bootstrap samples) averaging for J = 1, 2, 3, 4, 5 neigh-
bors.

Table 3. Experimental results (in %) for bootstrap error estimator.

jnn jnnwa jnntaxi jnnwataxi jnnpo

beetles 6.70 6.99 2.32 2.52 7.00 7.05 3.11 3.14 36.42 36.79

blood 94.12 91.52 81.04 80.15 94.82 91.71 81.39 80.15 80.82 78.93

crude-oil 24.63 25.05 14.30 14.30 21.28 22.04 15.39 15.68 36.55 36.80

fish 47.87 45.30 38.95 40.74 50.39 46.64 39.79 40.60 76.02 75.02

football 42.27 41.89 39.24 38.84 41.64 41.75 39.38 39.43 47.68 47.75

glass 31.81 33.52 40.97 41.72 30.09 31.41 46.61 46.38 67.66 65.48

ionosphere 15.14 15.41 16.39 16.09 10.94 11.41 16.39 16.09 34.01 37.12

iris 4.37 4.35 3.37 3.31 4.96 4.92 3.38 3.34 24.18 24.71

irradiation 72.95 70.34 67.41 69.50 72.51 71.39 70.76 72.17 69.56 73.57

school 43.00 42.69 7.03 7.16 42.86 42.67 7.87 7.97 64.39 65.24

thyroid 6.93 7.39 5.33 5.27 6.07 5.43 5.21 5.11 26.70 27.27

turtles 19.28 20.01 11.66 11.23 18.95 18.95 11.66 11.23 37.39 39.67

mean error 34.09 33.68 27.33 27.53 33.46 32.95 28.42 28.44 50.11 50.70

Table 4 contains results with the 10-fold stratified cross-validation error
estimation and for all datasets we have J for which the lowest error rate
is achieving. The tables contain information about error rates (in %).
If the discriminant space is one-dimensional, then for both strategies the
weighed methods have the same accuracy (sets ”ionosphere” and ”turtles”).
In the first and second column for all the methods there are results for the
first and second tie-breaking strategy, respectively. Let us use the codes:

• jnn - method with square of the Euclidean metric,

• jnnwa - weighed method with the Euclidean metric,

• nntaxi - method with the Manhattan metric,

• jnnwataxi - weighed method with the Manhattan metric,

• jnnpo - method with the post office metric.
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Table 4. Experimental results (in %) for the cross-validation error estimator.

jnn jnnwa jnntaxi jnnwataxi jnnpo

beetles 1.35 1.35 1.35 1.35 4.05 2.70 1.35 1.35 29.73 29.73

3 3 4 2 2 3 1 1 1 1

blood 91.25 71.25 73.75 66.25 91.25 71.25 73.75 63.75 76.25 66.25

20 22 7 10 28 14 7 29 8 31

crude-oil 16.07 16.07 7.14 7.14 14.29 12.50 8.93 8.93 26.79 26.79

1 1 11 10 1 4 9 10 1 1

fish 36.11 33.33 30.56 27.78 38.89 33.33 27.78 27.78 66,67 63.89

5 2 18 16 5 4 2 16 10 10

football 33.33 33.22 28.89 27.78 31.11 30.00 28.89 25.56 41.11 40.00

10 28 6 6 32 32 23 4 7 6

glass 24.47 24.47 36.45 36.92 23.83 23.83 41.59 41.59 65.42 65.42

1 1 2 1 1 1 1 1 19 18

ionosphere 12.82 12.82 12.82 12.82 9.12 9.12 12.82 12.82 25.93 25.93

3 2 8 128 1 1 8 128 1 1

iris 2.00 2.00 1.33 1.33 2.67 2.67 1.33 1.33 8.00 8.00

9 9 65 64 19 18 65 64 1 1

irradiation 62.22 55.56 55.56 53.33 60.00 60.00 60.00 53.33 60.00 62.22

3 2 3 2 13 6 3 3 3 2

school 35.29 32.94 4.71 4.71 35.29 31.76 3.53 3.53 54.12 54.12

5 2 4 4 5 7 1 1 1 1

thyroid 4.65 4.65 3.26 3.26 2.79 2.79 3.26 3.26 20.00 20.00

1 1 6 6 1 1 8 8 39 38

turtles 12.50 14.58 8.33 8.33 10.42 12.50 8.33 8.33 31.25 31.25

2 1 6 6 2 1 6 6 1 1

mean error 27.70 25.13 21.85 20.92 26.98 24.37 22.63 21.46 42.11 41.09

Experimental results with the bootstrap error estimator show that
for all J weighed methods under consideration the error rate decreases for
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the Euclidean metric and also for the taxi metric. The ”jnntaxi” method
for all cases is slightly more accurate than the ”jnn” method. However
the ”jnnwa” method wins with the ”jnnwataxi” method for all cases. The
”jnnpo” method compares dramatic regardless of J used and dataset cho-
sen. For classical methods without the ”jnnpo” the second strategy of tie-
breaking seems more accurate than the first. However, for weighed methods
both strategies are similar. Despite the reduction of mean error by weighed
methods, for some datasets these methods increase the error rate (for dataset
”glass” up to 10%) but on dataset ”school” we have reduction of about 38%.
On datasets ”ionosphere” and ”turtles” change of the performance is done
only by changing from the original space to the discriminant space because
it is one dimensional and hence weight is equal to 1 and the ”jnnwa” and
the ”jnnwataxi” have the same performance.

Experimental results with cross-validation error estimates confirm the
previous findings. Weighed methods win for 8 datasets and lose for 3 (we
have one tie). We see that if the size of dataset is large we can have less
accuracy with weighed methods than with the classic ones but this loss in
accuracy is small (the greatest is for the ”glass” dataset). It seems that the
second strategy of tie-breaking is more accurate than the first.

4. Conclusion

Experimental results suggest that weighed methods can improve classifica-
tion. It seems that the best results are achieved by the ”jnnwa” method
with the second strategy of tie-breaking. If we decide on classic methods we
should choose the ”jnntaxi” method.

The increase in performance of weighed methods can partly be a result
of classification in different spaces and not arising from the introduction of
weights. So it is interesting to see how classic methods work in discriminant
space.
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