Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | 25 | 2 | 217-239

Tytuł artykułu

Effect of choice of dissimilarity measure on classification efficiency with nearest neighbor method

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this paper we will precisely analyze the nearest neighbor method for different dissimilarity measures, classical and weighed, for which methods of distinguishing were worked out. We will propose looking for weights in the space of discriminant coordinates. Experimental results based on a number of real data sets are presented and analyzed to illustrate the benefits of the proposed methods. As classical dissimilarity measures we will use the Euclidean metric, Manhattan and post office metric. We gave the first two metrics weights and now these measures are not metrics because the triangle inequality does not hold. Howeover, it does not make them useless for the nearest neighbor classification method. Additionally, we will analyze different methods of tie-breaking.

Rocznik

Tom

25

Numer

2

Strony

217-239

Opis fizyczny

Daty

wydano
2005
otrzymano
2004-06-18
poprawiono
2004-08-04

Twórcy

  • Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań

Bibliografia

  • [1] C. Blake, E. Keogh and C. Merz, UCI Repository of Machine Learning Databases, http://www.ics.uci.edu/ mlearn/MLRepository.html, Univeristy of California, Irvine, Department of Information and Computer Sciences.
  • [2] T. Cover and P. Hart, Nearest neighbor pattern classification, IEEE Trans. Information Theory 13 (1) (1967), 21-27.
  • [3] L. Devroye, L. Gy[o\ddot]rfi and G. Lugosi, Probabilistic Theory of Pattern Recognition, Springer New York 1996.
  • [4] R. Gnanadeskian, Methods for Statistical Data Analysis of Multivariate Observations, John Wiley & Sons London Second, New York 1997.
  • [5] R.A. Johnson and D.W. Wichern, Applied Multivariate Statistical Analysis, Prentice-Hall, New Jersey 1982.
  • [6] W.J. Krzanowski and F.H.C. Marriott, Multivariate Analysis, 1 Distributions, Ordination and Inference, Edward Arnold London 1994.
  • [7] W.J. Krzanowski and F.H.C. Marriott, Multivariate Analysis, 2 Classification, Covariance Structures and Repeated Measurements, London 1995.
  • [8] D.F. Morrison, Multivariate statistical analysis, PWN, Warszawa 1990.
  • [9] R. Paredes and E. Vidal, A class-dependent weighted dissimilarity measure for nearest neighbor classification problems, Pattern Recognition Letters 21 (2000), 1027-1036.
  • [10] G.A.F. Seber, Multivariate Observations, John Wiley & Sons, New York 1984.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1070
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.