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1. Introduction

Order statistics and records are used in a variety of disciplines and have ex-
tensively appeared in statistical literature. Many authors have investigated
either of the topies or both, among others: Sarhan and Greenberg (1962),
Reiss (1989), Arnold, Balakrishnan and Nagaraja (1992, 1998), Ahsanullah
(1995) and Ahsanullah and Nevzorov (2001).
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In this paper, recurrence relations of conditional moment generating
functions and conditional moments of powers of order statistics and records
based on random samples drawn from a population whose distribution is a
member of a general class of distributions, denoted by =d, are obtained.

Suppose that a random variable X having an absolutely continuous
distribution function (df), considered by AL-Hussaini and Osman (1997),
AL-Hussaini (1999) and AL-Hussaini and Ahmad (2003a, 2003b), is given
by

F (x) ≡ FX(x; θ) = 1− e−λ(x;θ) ≡ 1− e−λ(x), x > 0,

and the probability density function (pdf), given by

f(x) = λ′(x) e−λ(x), x > 0,

where λ(x) ≡ λ(x; θ) is a nonnegative, monotone increasing and differen-
tiable function of x such that λ(x) → 0 as x → 0+ and λ(x) → ∞ as
x →∞, λ′(x) is the derivative of λ(x) with respect to x and the parameter
θ (may be a vector) belongs to some parameter space.

We shall write the class = of distributions as

(1.1) = =
{

F : F (x) = 1− e−λ(x), x > 0
}

.

A doubly truncated pdf on [P1, Q1], denoted by fd(x), is given by

(1.2) fd(x) = Ad λ′(x) e−λ(x), P1 ≤ x ≤ Q1, (P1 ≥ 0, Q1 ≤ ∞),

where

(1.3) Ad = 1/
[
e−λ(P1) − e−λ(Q1)

]
.

The corresponding doubly truncated df and the survival function (sf) are
given, respectively, for 0 ≤ P1 ≤ x ≤ Q1 ≤ ∞, by

(1.4) Fd(x) = Ad

[
e−λ(P1) − e−λ(x)

]
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and

(1.5) F̄d(x) = Q2 +
fd(x)
λ′(x)

,

where F̄d(.) = 1− Fd(.), Fd(.) is given by (1.4) and

(1.6) Q2 = −Ad e−λ(Q1) = e−λ(Q1)/[e−λ(Q1) − e−λ(P1)].

Notice that F̄d(P1) = 1 and F̄d(Q1) = 0.
We shall write =d to denote the doubly truncated class. So that, for

P1 ≤ x ≤ Q1, P1 ≥ 0, Q1 ≤ ∞,

(1.7) =d =
{

Fd : Fd(x) =
[
e−λ(P1) − e−λ(x)

] / [
e−λ(P1) − e−λ(Q1)

]}
.

Special cases of the doubly truncated class =d are the non-truncated, left and
right truncated classes, denoted by =, =L and =R, where the non-truncated
class = is given by (1.1), the left truncated class is given by

(1.8) =L =
{

FL : FL(x) = 1− e−[λ(x)−λ(P1)], x ≥ P1, P1 > 0
}

,

in which case, it is only required for λ(x) to satisfy the condition λ(x) →∞
as x →∞. The right truncated class =R is given by

(1.9) =R =
{

FR : FR(x)=
[
1− e−λ(x)

]/[
1− eλ(Q1)

]
, 0≤x≤Q1, Q1 < ∞

}
,

in which case, it is only required for λ(x) to satisfy the condition λ(x) → 0
as x → 0+.

AL-Hussaini, Ahmad and El-Boghdady (2004a, 2004b) have obtained
recurrence relations of multivariate moment generating functions of powers
of order statistics and records, respectively, based on random samples drawn
from a population whose distribution is a member of the doubly truncated
class of distributions =d.
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Members of =d include important distributions, used in areas as life
testing and other areas of statistics as well, such as the doubly truncated
distributions of each of the Weibull, Compound Weibull, Pareto, power
function, Gompertz and compound Gompertz distributions. Recurrence
relations obtained in this paper are applied to such members as
illustrative examples.

2. Recurrence relations for conditional moment

generating function of order statistics

Suppose that X1, . . . , Xn are independently identically distributed random
variables as a random variable X having a df Fd(x), x ∈ [P1, Q1]. Let
X1:n < · · · < Xn:n be the order statistics of X1, . . . , Xn. For integers r, s
such that 1 ≤ r < s ≤ n, the conditional density function of Xs:n given Xr:n

is known to be given by

(2.1)
fXs:n|Xr:n

(y | x) = A1

[
F̄d(x)− F̄d(y)

]s−r−1[
F̄d(y)

]n−s
fd(y),

P1 ≤ x < y ≤ Q1,

where

(2.2) A1 = (n− r)! /
[
(s− r − 1)! (n− s)! {F̄d(x)}n−r

]
.

(See, for example David 1981).
The following theorem gives recurrence relations for the conditional mo-

ment generating function or conditional moments of order statistics.

Theorem 1. The necessary and sufficient condition for a random variable
X to be distributed as (1.4), is that, for integers r, s and a such that 1 ≤ r <
s ≤ n and a ≥ 1,



Recurrence relations for conditional moments ... 185

(2.3)

MXa
s:n|Xr:n

(t | x)−MXa
s−1:n|Xr:n

(t | x)

=
a t

n− s + 1
E

[
Xa−1

s:n etXa
s:n

λ′(Xs:n)
| Xr:n = x

]
+

(n− r) Q2

(n− s + 1) F̄d(x)

[
MXa

s:n−1|Xr:n−1
(t | x)−MXa

s−1:n−1|Xr:n−1
(t | x)

]
,

which implies that

(2.4)

E
[
Xa

s:n | Xr:n = x
]
− E

[
Xa

s−1:n | Xr:n = x
]

=
a

n− s + 1
E

[
Xa−1

s:n

λ′(Xs:n)
| Xr:n = x

]
+

(n− r)Q2

(n− s + 1)F̄d(x)

{
E

[
Xa

s:n−1 | Xr:n−1 = x
]
− E

[
Xa

s−1:n−1 | Xr:n−1 = x
]}

.

It is assumed that all of the moment generating functions and conditional
moments involved exist.

Proof.

(2.5)

MXa
s:n|Xr:n

(t | x)

= E
[
etXa

s:n | Xr:n = x
]

=
∫ Q1

x
etya

fXs:n|Xr:n
(y | x) dy

= A1

∫ Q1

x
etya

[
F̄d(x)− F̄d(y)

]s−r−1[
F̄d(y)

]n−s
fd(y)dy

= −A2

∫ Q1

x
etya

[
F̄d(x)− F̄d(y)

]s−r−1
d
[
F̄d(y)

]n−s+1
,
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where

(2.6) A2 =
A1

n− s + 1
=

(n− r)!

(n− s + 1)! (s− r − 1)!
[
F̄d(x)

]n−r .

Integrating by parts, we then have

(2.7)

MXa
s:n|Xr:n

(t | x)

= A2

∫ Q1

x

[
F̄d(y)

]n−s+1
{

a t ya−1 etya
[
F̄d(x)− F̄d(y)

]s−r−1

+etya
(s− r − 1)

[
F̄d(x)− F̄d(y)

]s−r−2
fd(y)

}
dy

= a t A2

∫ Q1

x
ya−1etya

[
F̄d(x)− F̄d(y)

]s−r−1[
F̄d(y)

]n−s+1
dy

+A3

∫ Q1

x
etya

[
F̄d(x)− F̄d(y)

]s−r−2[
F̄d(y)

]n−s+1
fd(y) dy,

where

A3 = (s− r − 1) A2 =
(n− r)!

(n− s + 1)! (s− r − 2)!
[
F̄d(x)

]n−r .

The second term in (2.7) is the same as (2.5) when s is replaced by s − 1.
Therefore, (2.7) can be written as

(2.8)

MXa
s:n|Xr:n

(t | x)−MXa
s−1:n|Xr:n

(t | x)

= a t A2

∫ Q1

x
ya−1etya

[
F̄d(x)− F̄d(y)

]s−r−1[
F̄d(y)

]n−s+1
dy.

By using (1.5), we can write

[
F̄d(y)

]n−s+1
=

[
F̄d(y)

]n−s[
F̄d(y)] =

[
F̄d(y)

]n−s
[
Q2 +

fd(y)
λ′(y)

]
.
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By substituting in (2.8) with A2 being written in terms of A1 as in (2.6),
we have

(2.9)

MXa
s:n|Xr:n

(t | x)−MXa
s−1:n|Xr:n

(t | x)

=
a t A1

n− s + 1

∫ Q1

x

ya−1etya

λ′(y)

[
F̄d(x)− F̄d(y)

]s−r−1[
F̄d(y)

]n−s
fd(y) dy

+
a t Q2 A1

n− s + 1

∫ Q1

x
ya−1etya

[
F̄d(x)− F̄d(y)

]s−r−1[
F̄d(y)

]n−s
dy

=
a t

n− s + 1
E

[
Xa−1

s:n etXa
s:n

λ′(Xs:n)
| Xr:n = x

]

+
a t Q2 A1

n− s + 1

∫ Q1

x
ya−1etya

[
F̄d(x)− F̄d(y)

]s−r−1[
F̄d(y)

]n−s
dy.

By replacing n by n− 1, in (2.8), we obtain

(2.10)

∫ Q1

x
ya−1 etya

[
F̄d(x)− F̄d(y)

]s−r−1[
F̄d(y)

]n−s
dy

=
(n− r)

a t A1 F̄d(x)

[
MXa

s:n−1|Xr:n−1
(t | x)−MXa

s−1:n−1|Xr:n−1
(t | x)

]
.

Notice, from (2.6) and (2.2), that if n is replaced by n − 1 in (2.6), then
A2 = A1F̄d(x) / (n− r) where A1 is given by (2.2).

Substituting in (2.9), we obtain (2.3).

On the other hand, if (2.3) is satisfied, its left hand side is then given,
from (2.8), by

(2.11) a t A2

∫ Q1

x
ya−1etya

[
F̄d(x)− F̄d(y)

]s−r−1[
F̄d(y)

]n−s+1
dy.
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The right hand side of (2.3) is given, from definition and the use of (2.10)
and (2.9), by

a t A1

n−s+1

∫ Q1

x
ya−1etya

[
F̄d(x)− F̄d(y)

]s−r−1[
F̄d(y)

]n−s
[
fd(y)
λ′(y)

]
dy

(2.12) +
a t Q2 A1

n− s + 1

∫ Q1

x
ya−1etya

[
F̄d(x)− F̄d(y)

]s−r−1[
F̄d(y)

]n−s
dy

=a t A2

∫ Q1

x
ya−1etya

[
F̄d(x)−F̄d(y)

]s−r−1[
F̄d(y)

]n−s
[
Q2+

fd(y)
λ′(y)

]
dy.

By equating (2.11) and (2.12), we obtain

0 =
∫ Q1

x
ya−1etya

[
F̄d(x)− F̄d(y)

]s−r−1[
F̄d(y)

]n−s
[
F̄d(y)−Q2 − fd(y)

λ′(y)

]
dy.

By applying the extension of Müntz-Sazás theorem [see, Hwang and Lin
(1984)], it follows that

F̄d(y) = Q2 +
fd(y)
λ′(y)

.

By differentiating both sides of (2.3) and then setting t = 0, the recurrence
relation (2.4) of conditional moments of order statistics is obtained.

2.1. Left, right and nontruncated cases
Special conditional doubly truncated cases are the conditional left, right
and nontruncated distributions. Recurrence relations of moment generating
functions and product moments of order statistics corresponding to each one
of such cases characterize its members.

Corollary 1. The necessary and sufficient condition for a random variable
X to be distributed as a member of the left truncated class (1.8) is that, for
integers r, s and a such that 1 ≤ r < s ≤ n and a ≥ 1,
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(2.13)

MXa
s:n|Xr:n

(t | x)−MXa
s−1:n|Xr:n

(t | x)

=
a t

n− s + 1
E

[
Xa−1

s:n etXa
s:n

λ′(Xs:n)
| Xr:n = x

]
,

which implies that

(2.14)

E
[
Xa

s:n | Xr:n = x
]
− E

[
Xa

s−1:n | Xr:n = x
]

=
a

n− s + 1
E

[
Xa−1

s:n

λ′(Xs:n)
| Xr:n = x

]
.

Corollary 2. The necessary and sufficient condition for a random variable
X to be distributed as a member of the right truncated class (1.9) is that,
for integers r, s and a such that 1 ≤ r < s ≤ n and a ≥ 1,

(2.15)

MXa
s:n|Xr:n

(t | x)−MXa
s−1:n|Xr:n

(t | x) =
at

n− s + 1

E

[
Xa−1

s:n etXa
s:n

λ′(Xs:n)
| Xr:n = x

]
+

(n− r)e−λ(Q1)

[e−λ(Q1) − 1](n− s + 1)F̄d(x)

[
MXa

s:n−1|Xr:n−1
(t | x)−MXa

s−1:n−1|Xr:n−1
(t | x)

]
,

which implies that

(2.16)

E
[
Xa

s:n | Xr:n = x
]
− E

[
Xa

s−1:n | Xr:n = x
]

=
a

n− s + 1

E

[
Xa−1

s:n

λ′(Xs:n)
| Xr:n = x

]
+

(n− r)e−λ(Q1)

[
e−λ(Q1) − 1

]
(n− s + 1)F̄d(x)

{
E

[
Xa

s:n−1 | Xr:n−1 = x
]
− E

[
Xa

s−1:n−1 | Xr:n−1 = x
]}

.
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Remarks.
(1) In the non-truncated case =, the characterization condition is the

same as (2.13).
(2) A referee has pointed out that relation (2.3) can also be shown to

be a consequence of Eq. (2.9) obtained by Ahmad and Fawzy (2003).

2.2 Examples

(1) Doubly truncated Weibull distribution:

λ(x) = βxγ and λ′(x) = βγxγ−1.

Recurrence relations (2.3) and (2.4) reduce, respectively, to

MXa
s:n|Xr:n

(t | x)−MXa
s−1:n|Xr:n

(t | x)

=
a t

βγ (n− s + 1)
E

[
Xa−γ

s:n etXa
s:n | Xr:n = x

]

+
(n− r) Q2

(n− s + 1) F̄d(x)

[
MXa

s:n−1|Xr:n−1
(t | x)−MXa

s−1:n−1|Xr:n−1
(t | x)

]

and

E
[
Xa

s:n | Xr:n = x
]
−E

[
Xa

s−1:n | Xr:n = x
]

=
a

βγ (n− s + 1)
E

[
Xa−γ

s:n | Xr:n = x
]

+
(n− r) Q2

(n− s + 1) F̄d(x)

{
E

[
Xa

s:n−1 | Xr:n−1 = x
]
− E

[
Xa

s−1:n−1 | Xr:n−1 = x
]}

,

where F̄d(x) = {exp[−(xγ −Qγ
1)]− 1}/{exp[−β(P γ

1 −Qγ
1)]− 1} and a > γ.
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[Recurrence relations for product moments of order statistics under the
doubly truncated exponential and doubly truncated Rayleigh distributions
can be obtained from the Weibull distribution by setting γ = 1 and 2,
respectively].

(2) Doubly truncated compound Weibull distribution
(three - parameter Burr type XII distribution):

λ(x) = γ ln(1 + xθ/β) and λ′(x) = γ θ xθ−1/(β + xθ).

Recurrence relations (2.3) and (2.4) reduce, respectively, to

MXa
s:n|Xr:n

(t | x)−MXa
s−1:n|Xr:n

(t | x)

=
a t

γ θ (n−s+1)

{
βE

[
Xa−θ

s:n etXa
s:n | Xr:n =x

]
+E

[
Xa

s:n exptXa
s:n | Xr:n =x

]}

+
(n− r) Q2

(n− s + 1) F̄d(x)

[
MXa

s:n−1|Xr:n−1
(t | x)−MXa

s−1:n−1|Xr:n−1
(t | x)

]

and

E
[
Xa

s:n | Xr:n = x
]
− E

[
Xa

s−1:n | Xr:n = x
]

=
a

γ θ (n− s + 1)

{
βE

[
Xa−θ

s:n | Xr:n = x
]

+ E
[
Xa

s:n | Xr:n = x
]}

+
(n−r) Q2

(n−s+1)F̄d(x)

{
E

[
Xa

s:n−1 | Xr:n−1 =x
]
−E

[
Xa

s−1:n−1 | Xr:n−1 =x
]}

,

where F̄d(x) = {[(β + Qθ
1)/(β + xθ)]α − 1}/{[(β + Qθ

1)/(β + P θ
1 )]α − 1}.
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[Recurrence relations for product moments of order statistics under the
doubly truncated compound exponential, doubly truncated compound
Rayleigh and doubly truncated two-parameter Burr type XII distributions
can be obtained from the compound Weibull distribution by setting
α = 1, α = 2 and β = 1, respectively].

(3) Doubly truncated Pareto I distribution:

λ(x) = −γ ln(α/x) and λ′(x) = γ/x.

Recurrence relations (2.3) and (2.4) reduce, respectively, to

MXa
s:n|Xr:n

(t | x)−MXa
s−1:n|Xr:n

(t | x)

=
a t β

γ(n− s + 1)
E

[
Xa

s:netXa
s:n | Xr:n = x

]

+
(n− r) Q2

(n− s + 1) F̄d(x)

[
MXa

s:n−1|Xr:n−1
(t | x)−MXa

s−1:n−1|Xr:n−1
(t | x)

]

and

E
[
Xa

s:n | Xr:n = x
]
−E

[
Xa

s−1:n | Xr:n = x
]

=
a

γ(n− s + 1)
E

[
Xa

s:n | Xr:n = x
]

+
(n− r) Q2

(n− s + 1) F̄d(x)

{
E

[
Xa

s:n−1 | Xr:n−1 = x
]
− E

[
Xa

s−1:n−1 | Xr:n−1 = x
]}

,

where F̄d(x) = [(Q1/x)γ − 1]/[(Q1/P1)γ − 1].
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(4) Doubly truncated beta distribution:

λ(x) = β ln[1/(1− x)] and λ′(x) = β/(1− x).

Recurrence relations (2.3) and (2.4) reduce, respectively, to

MXa
s:n|Xr:n

(t | x)−MXa
s−1:n|Xr:n

(t | x)

=
a t

β(n− s + 1)

{
E

[
Xa−1

s:n etXa
s:n | Xr:n = x

]
−E

[
Xa

s:netXa
s:n | Xr:n = x

]}

+
(n− r)Q2

(n− s + 1)F̄d(x)

[
MXa

s:n−1|Xr:n−1
(t | x)−MXa

s−1:n−1|Xr:n−1
(t | x)

]

and

E
[
Xa

s:n | Xr:n = x
]
−E

[
Xa

s−1:n | Xr:n = x
]

=
a

β(n− s + 1)

{
E

[
Xa−1

s:n | Xr:n = x
]
− E

[
Xa

s:n | Xr:n = x
]}

+
(n− r)Q2

(n− s + 1)F̄d(x)

{
E

[
Xa

s:n−1 | Xr:n−1 = x
]
− E

[
Xa

s−1:n−1 | Xr:n−1 = x
]}

,

where F̄d(x) = {[(1 − x)/(1 − Q1)]β − 1}/{[(1 − P1)/(1 − Q1)]β − 1} and
a > 1.
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(5) Doubly truncated Gompertz distribution:

λ(x) = (1/σγ)[eγx − 1] and λ′(x) = (1/σ)eγx.

Recurrence relations (2.3) and (2.4) reduce, respectively, to

MXa
s:n|Xr:n

(t | x)−MXa
s−1:n|Xr:n

(t | x)

=
(

a t σ

n− s + 1

)
E

[
Xa−1

s:n etXa
s:n−γXs:n | Xr:n = x

]

+
(n− r)Q2

(n− s + 1)F̄d(x)

[
MXa

s:n−1|Xr:n−1
(t | x)−MXa

s−1:n−1|Xr:n−1
(t | x)

]

and

E
[
Xa

s:n | Xr:n = x
]
−E

[
Xa

s−1:n | Xr:n = x
]

=
a σ

n− s + 1

{
E

[
Xa−1

s:n e−γXs:n | Xr:n = x
]

+ E
[
Xa

s:n | Xr:n = x
]}

+
(n− r) Q2

(n− s + 1) F̄d(x)

{
E

[
Xa

s:n−1 | Xr:n−1 = x
]
− E

[
Xa

s−1:n−1 | Xr:n−1 = x
]}

,

where F̄d(x) = {exp[− 1
σγ (eγx−eγQ1)]−1}/{exp[− 1

σγ (eγP1−eγQ1)]−1} and
a > 1.
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(6) Doubly truncated compound Gompertz distribution:

λ(x) = δ ln[1 + (eγx − 1)/βγ] and λ′(x) = δγ/[1 + (βγ − 1)e−γx].

Recurrence relations (2.3) and (2.4) reduce, respectively, to

MXa
s:n|Xr:n

(t | x)−MXa
s−1:n|Xr:n

(t | x)

=
at

γδ(n− s + 1)

{
E

[
Xa−1

s:n etXa
s:n | Xr:n = x

]

+(βγ − 1)E
[
Xa−1

s:n etXa
s:n−γXs:n | Xr:n = x

]}

+
(n− r) Q2

(n− s + 1) F̄d(x)

[
MXa

s:n−1|Xr:n−1
(t | x)−MXa

s−1:n−1|Xr:n−1
(t | x)

]

and

E
[
Xa

s:n | Xr:n = x
]
−E

[
Xa

s−1:n | Xr:n = x
]

=
a

γδ(n−s+1)

{
E

[
Xa−1

s:n | Xr:n = x
]
+(βγ − 1)E

[
Xa−1

s:n e−γXs:n | Xr:n =x
]}

+
(n− r) Q2

(n− s + 1) F̄d(x)

{
E

[
Xa

s:n−1 | Xr:n−1 = x
]
− E

[
Xa

s−1:n−1 | Xr:n−1 = x
]}

,

where F̄d(x) = {[(βγ − 1 + eγx)/(βγ − 1 + eγQ1)]−δ − 1}/{[(βγ − 1 + eγP1)/
(βγ − 1 + eγQ1)]−δ − 1} and a > 1.
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3. Recurrence relation for conditional moment

generating function of record values

A different type of ordering is that of records. Suppose that X1, X2, . . . is
a sequence of i.i.d. random variables as a random variable X having a df
Fd(x). Let, for n ≥ 1, XU(n) = max{X1, . . . , Xn}.

We say that XU(n) is an upper record value of {Xn, n ≥ 1}, if XU(j) >
XU(j−1), for j > 1. The sequence {U(n), n ≥ 1} is called upper record times,
where U(1) = 1 and U(n) = min{j : j > U(n − 1), Xj > XU(n−1), n > 1}.
Lower record times and values are similarly defined. For details, see Arnold,
Balakrishnan and Nagaraja (1998). In this book, it was shown that the
conditional density function fU(n)|U(m)(y | x) is given by

fU(n)|U(m)(y | x) =
[R(y)−R(x)]n−m−1

(n−m− 1)!
f(y)
F̄ (x)

, y > x.

The conditional density function based on the doubly truncated distribution
F̄d(.) (and density fd(.)) is then given by

(3.1)

fU(n)|U(m)(y | x) =

[Rd(y)−Rd(x)]n−m−1

(n−m− 1)!
fd(y)
F̄d(x)

, P1 ≤ x < y ≤ Q1,

where

(3.2) Rd(.) = − ln[F̄d(.)].

For a given record value, we may be interested in knowing what is expected
in the next record. The following theorem gives recurrence relations for the
conditional moment generating function or conditional moments of record
values.

Theorem 2. The necessary and sufficient condition for a random variable
X to be distributed as (1.4), is that, for integers 1 ≤ m < n and a ≥ 1,
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(3.3)

MXa
U(n+1)

|XU(m)
(t | x)−MXa

U(n)
|XU(m)

(t | x)

= atE


Xa−1

U(n+1)e
tXa

U(n+1)

λ′(XU(n+1))

{
1− e[λ(XU(n+1))−λ(Q1)]

}
| XU(m) = x


 ,

which implies that

(3.4)

E
[
Xa

U(n+1) | XU(m) = x
]
− E

[
Xa

U(n) | XU(m) = x
]

= aE

[
X2a−1

U(n+1)

λ′(XU(n+1))

{
1− e[λ(XU(n+1))−λ(Q1)]

}
| XU(m) = x

]
.

It is assumed that all of the conditional moment generating functions and
conditional moments involved exist.

Proof. By definition,

(3.5)

MXa
U(n)

|XU(m)
(t | x) = E

[
e
tXa

U(n) | XU(m) = x
]

=
∫ Q1

x
etya

fXU(n)|XU(m)
(y | x) dy

= B

∫ Q1

x
etya

[
Rd(y)−Rd(x)

]n−m−1
fd(y) dy,

where

(3.6) B = 1 /
[
(n−m− 1)! F̄d(x)

]
, Rd(.) = − ln

[
F̄d(.)

]
,

and F̄d(.), fd(.) are given by (1.4) and (1.1). Therefore
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(3.7)

MXa
U(n)

|XU(m)
(t | x) = B?

∫ Q1

x
etya

F̄d(y)d
[
Rd(y)−Rd(x)

]n−m

=−B?

∫ Q1

x

[
Rd(y)−Rd(x)

]n−m{
etya[− fd(y)

]
+a t ya−1etya

F̄d(y)
}

dy

= B?

∫ Q1

x
etya

[
Rd(y)−Rd(x)

]n−m
fd(y)dy

−a t B?

∫ Q1

x
ya−1etya

[
F̄d(y)
fd(y)

] [
Rd(y)−Rd(x)

]n−m
fd(y) dy,

where B? = B / (n−m)! = 1/[(n−m)! F̄d(x)].

It may be observed that the first term in (3.7) is the same as (3.5) if n is
replaced by n− 1. In the second term of (3.7),

F̄d(y)
fd(y)

=
1

λ′(y)

[
1− e[−λ(Q1)−λ(y)]

]
.

Therefore, (3.7) can be rewritten in the form

MXa
U(n+1)

|XU(m)
(t | x)−MXa

U(n)
|XU(m)

(t | x)

= a t E


Xa−1

U(n+1)e
tXa

U(n+1)

λ′(XU(n+1))

{
1− e[λ(XU(n+1))−λ(Q1)]

}
| XU(m)


 .

On the other hand, if condition (3.3) is satisfied, then its left hand side is
given from (3.7) by

(3.8) a t B?

∫ Q1

x
ya−1etya

[
F̄d(y)
fd(y)

] [
Rd(y)−Rd(x)

]n−m
fd(y) dy.
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The right hand side of condition (3.3) is given by

(3.9) a t B?

∫ Q1

x
ya−1etya

[
1− e−[λ(Q1)−λ(y)]

λ′(y)

] [
Rd(y)−Rd(x)

]n−m
fd(y) dy.

Equating (3.8) and (3.9) we then have

0 =
∫ Q1

x
ya−1etya

[
F̄d(y)
fd(y)

− 1− e−[λ(Q1)−λ(y)]

λ′(y)

] [
Rd(y)−Rd(x)

]n−m
fd(y) dy.

It then follows from the extension of Müntz-Sazás theorem [see, Hwang and
Lin (1984)] that

F̄d(y)
fd(y)

=
1− e−[λ(Q1)−λ(y)]

λ′(y)
=

e−λ(y) − e−λ(Q1)

λ′(y) e−λ(y)
,

which has a solution given by

F̄d(y) = A[e−λ(Q1) − e−λ(y)],

so that

fd(y) = A [λ′(y) e−λ(y)], P1 ≤ y ≤ Q1,

where A is such that F̄d(y) is a survival function, or fd(y) is a pdf .
Differentiating both sides of (3.3) with respect to t and then setting

t = 0, recurrence relation (3.4), for conditional moments, is obtained.

Remark. A referee has pointed out that relation (3.3) can also be shown
to be a consequence of Eq. (2.7) obtained by Ahmad and Fawzy (2003).

3.1. Left, right and nontruncated cases
In the left truncated or nontruncated cases, conditions (3.3) and (3.4)
become, for integers n < m and a ≥ 1,
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MXa
U(n+1)

|XU(m)
(t | x)−MXa

U(n)
|XU(m)

(t | x)

= a t E


Xa−1

U(n+1)e
tXa

U(n+1)

λ′(XU(n+1))
| XU(m)


 ,

and

E
[
Xa

U(n+1) | XU(m) = x
]
− E

[
Xa

U(n) | XU(m) = x
]

= a E

[
X2a−1

U(n+1)

λ′(XU(n+1))
| XU(m)

]
,

In the left truncated case, x ≥ P1, (P1 > 0) and λ(x) →∞ as x →∞.
In the non-truncated case, x > 0, (P1 > 0) and λ(x) → 0 as x → 0+

and λ(x) →∞ as x →∞.
In the right truncated case. conditions (3.3) and (3.4) remain the same,

provided that 0 ≤ x ≤ Q1, Q1 < ∞ and λ(x) → 0 as x → 0+.

3.2 Examples

(1) Doubly truncated Weibull distribution:

λ(x) = βxγ and λ′(x) = βγxγ−1.

Recurrence relations (3.3) and (3.4) reduce, respectively, to

MXa
U(n+1)

|XU(m)
(t | x)−MXa

U(n)
|Xr:n

(t | x)

=
a t

βγ
E

[
Xa−γ

U(n+1) exptXa
U(n+1)

(
1− eβ(xγ−Qγ

1 )
)
| XU(m) = x

]
,
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where a > γ and

E
[
Xa

U(n+1) | XU(m) = x
]
−E

[
Xa

U(n) | XU(n) = x
]

=
a

βγ
E

[
X2a−γ

U(n+1)

(
1− eβ(xγ−Qγ

1 )
)
| XU(m) = x

]
,

where 2a > γ.

[Recurrence relations for product moments of record values under the doubly
truncated exponential and doubly truncated Rayleigh distributions can be
obtained from the Weibull distribution by setting α = 1 and 2,
respectively].

(2) Doubly truncated compound Weibull distribution
(three - parameter Burr type XII distribution):

λ(x) = γ ln(1 + xθ/β) and λ′(x) = γ θ xθ−1/(β + xθ).

Recurrence relations (3.3) and (3.4) reduce, respectively, to

MXa
U(n+1)

|XU(m)
(t | x)−MXa

U(n)
|XU(m)

(t | x)

=
a t

γθ
E

[(
βXa−θ

U(n+1) + Xa
U(n+1)

)
e
tXa

U(n+1)

[
1−

(β + Xθ
U(n+1)

β + Qθ
1

)γ]
| Xr:n = x

]
,

where a ≥ θ and

E
[
Xa

U(n+1) | XU(m) = x
]
− E

[
Xa

U(n) | XU(m) = x
]

=
a

γθ
E

[(
βX2a−θ

U(n+1) + X2a
U(n+1)

)[
1−

(β + Xθ
U(n+1)

β + Qθ
1

)γ]
| Xr:n = x

]
,

where 2a ≥ θ.
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[Recurrence relations for product moments of record values under the dou-
bly truncated compound exponential, doubly truncated compound Rayleigh
and doubly truncated Burr type XII dstributions can be obtained from
the compound Weibull distribution by setting γ = 1, γ = 2 and β = 1,
respectively].

(3) Doubly truncated Pareto distribution:

λ(x) = −γ ln(α/x) and λ′(x) = γ/x.

Recurrence relations (3.3) and (3.4) reduce, respectively, to

MXa
U(n+1)

|XU(m)
(t | x)−MXa

U(n+1)
|XU(m)

(t | x)

=
a t

γ

{
E

[
Xa

U(n+1)e
tXa

U(n+1)

(
1−

(
XU(n+1)

Q1

)γ)
| XU(m) = x

]}

and

E
[
Xa

U(n+1) | XU(m) = x
]
−E

[
Xa

U(n) | XU(m) = x
]

=
a

γ

{
E

[
Xa

U(n+1)

(
1−

(
XU(n+1)

Q1

)γ)
| XU(m) = x

]}
.

(4) Doubly truncated beta distribution:

λ(x) = β ln[1/(1− x)] and λ′(x) = β/(1− x).

Recurrence relations (3.3) and (3.4) reduce, respectively, to

MXa
U(n+1)

|XU(m)
(t | x)−MXa

U(n)
|XU(m)

(t | x)

=
at

β
E

[(
Xa−1

U(n+1)+Xa
U(n+1)

)
e
tXa

U(n+1)

(
1−

( 1−Q1

1−XU(n+1)

)β
)
| XU(m) =x

]

and
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E
[
Xa

U(n+1) | XU(m) = x
]
− E

[
Xa

U(n) | XU(m) = x
]

=
a

β
E

[(
Xa−1

U(n+1) + Xa
U(n+1)

)(
1−

(
1−Q1

1−XU(n+1)

)β
)
| XU(m) = x

]
,

where a > 1.

(5) Doubly truncated Gompertz distribution:

λ(x) = (1/σγ)[eγx − 1] and λ′(x) = (1/σ)eγx.

Recurrence relations (3.3) and (3.4) reduce, respectively, to

MXa
U(n+1)

|XU(m)
(t | x)−MXa

U(n)
|XU(m)

(t | x) = a t σ

×E
[
Xa−1

U(n+1)e
tXa

U(n+1)
−γXU(n+1)

×
{

1− exp

(
1

σ γ

(
eγXU(n+1) − eγQ1

))}
| XU(m) = x

]

and

E
[
Xa

U(n+1) | XU(m) = x
]
− E

[
Xa

U(n) | XU(m) = x
]

= a σ E
[
Xa−1

U(n+1)e
−γXU(n+1)

×
{

1− exp

(
1

σ γ
(eγXU(n+1) − eγQ1)

)}
| XU(m) = x

]
,

where a > 1.



204 E.K.AL-Hussaini, A.A.Ahmad and H.H.El-Boghdady

(6) Doubly truncated compound Gompertz distribution:

λ(x) = δ ln[1 + (eγx − 1)/βγ] and λ′(x) = δγ/[1 + (βγ − 1)e−γx].

Recurrence relations (3.3) and (3.4) reduce, respectively, to

MXa
U(n+1)

|XU(m)
(t | x)−MXa

U(n+1)
|XU(m)

(t | x)

=
at

γδ
E

[
Xa−1

U(n+1) e
tXa

U(n+1)

(
1 +

(
βγ − 1

)
e−γXU(n+1)

)

×
[
1−

(
βγ + eγXU(n+1) − 1

βγ + eγQ1 − 1

)δ
]
| XU(m) = x

]

and, for a > 1,

E
[
Xa

U(n+1) | XU(m) = x
]
− E

[
Xa

U(n) | XU(m) = x
]

=
a

γδ
E

[
Xa−1

U(n+1)

(
1 +

(
βγ − 1

)
e−γXU(n+1)

)

×
[
1−

(
βγ + eγXU(n+1) − 1

βγ + eγQ1 − 1

)δ
]
| XU(m) = x

]
.
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