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Abstract

We present here the results of the investigation on approximation
by the Poisson law of distributions of sums of random variables in the
scheme of series. We give the results pertaining to the behaviour of
large deviation probabilities and asymptotic expansions, to the method
of cumulants, with the aid of which our results have been obtained.
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Let us have a scheme of series of random variables (r.v.) Xni, n → ∞,
i = 1, kn independent in each row (series).

1Academician Vytautas Statulevičius died in 23 of November, 2003.



162 A. Aleškevičienė and V. Statulevičius

Denote

Sn = Xn1 + . . . + Xnkn , Fn(x) = P{Sn < x},

Π(x; λ) =
∑

0≤k≤x

e−λλk

k!
.

Let us recall the necessary and satisfactory conditions for the convergence
of distributions P{Sn < x} to the limit Poisson law Π(x, λ).

Theorem 1 ([12]). For the distribution functions (d.f ’s) F̄n(x) = P{Sn −
An < x} of the center sums consisting of infinitesimal (or contstant in
the limit) independent sumands Xni to converge strongly to the Poisson
d.f. Π(x; λ) it is necessary and sufficient that there exist constants ank,∑
k

ank = An, such that the d.f.’s Fnk(x) = P{Xnk − ank < x} satisfy the

conditions

1)
kn∑

k=1

[1− Pnk(0)− Pnk(1)] → 0,

2)
kn∑

k=1

Pnk(1) → λ,

where Pnk(0) and Pnk(1) are the jumps of Fnk at the points 0 and 1,
respectively.

Usually, ank = 0 and then An = 0.
Here the strong convergence of the d.f.’s Fn to the d.f. F means that

Fn(x) → F (x), Fn(x + 0) → F (x + 0)

for each point.
The necessary and sufficient conditions for the weak convergence

F̄n(x) → Π(x; λ) are described in [16].
Let us recall now several results about the rate of convergence. When

talking about the problems of the convergence rate, the quantities
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d(X, Y ) = sup
A
|P{X ∈ A} −P{Y ∈ A}|

=
1
2

∞∑

k=0

|P{X = k} −P{Y = k}|,

d0(X, Y ) = sup
k≥0

|P{X ≤ k} −P{Y ≤ k}|,

were usually taken as a measure of difference between the distributions of
two nonnegative integer random variables X and Y . Obviously, d0(X,Y ) ≤
d(X, Y ).

Theorem 2 ([14]). Suppose X,X1, X2, . . . , Xn are independent Bernoul-
li r.v.’s with success probabilities p1, p2, . . . , pn, respectively. Let Y be a
Poisson r.v. with mean EY =

∑n
i=1 pi. Then

d(X, Y ) ≤
n∑

i=1

p2
i .

Theorem 3 ([13]). Let X1, X2, . . . , Xn be independent nonnegative integer
r.v.’s and Y be a Poisson r.v. with mean EY =

∑n
i=1 EXi. Then

d0

(
n∑

i=1

Xi, Y

)
≤ 2

π

n∑

i=1

[E2Xi + EXi(Xi − 1)].

Theorem 4 ([15]). Let X1, X2, . . . , Xn be nonnegative (can be dependent as
well) integer r.v.’s and let p1 = P{X1 = 1} and pi = P{Xi = 1|Fi−1}, 2 ≤
i ≤ n, where Fi denotes σ-algebra generated by r.v.’s X1, . . . , Xi. Let Y be
a Poisson r.v. with mean EY =

∑n
i=1 Epi. Then
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d

(
n∑

i=1

Xi, Y

)
≤

n∑

i=1

E2(pi) +
n∑

i=1

|pi −Epi|+
n∑

i=1

P{Xi ≥ 2}

and

d0

(
n∑

i=1

Xi, Y

)
≤ 2

π

n∑

i=1

E2(pi) +
n∑

i=1

E|pi − Epi|+
n∑

i=1

P{Xi ≥ 2}

If r.v.’s Xi satisfy additional conditions it is possible to get more precise
results, namely, asymptotic expansions and theorems of large deviations for
the distributions Fn(x) = P{Snkn < x}, Snkn =

∑kn
i=1 Xni, converging to

the Poisson law Π(x; λ), λ = ESnkn =
∑kn

j=1 λnj , λnj = EXnj .
Before stating our results about assymptotic expansions and probabil-

ities of large deviations, we recall the definition of factorial cumulants and
their properties.

Let an r.v. X assume nonnegative integer values. If EXk < ∞, then
factorial moments and cumulants of the k-th order of the r.v. X are defined
as follows:

EX(k) = EX(X − 1) . . . (X − k + 1),

Γk(X) =
k∑

ν=1

(−1)ν−1

ν

∑

k1+...+kν=k

EX(k1) . . . EX(kν).

In a special case, when η is a Poisson r.v. with the parameter λ,

Eη(k) = Eη(η − 1) . . . (η − k + 1) = λk, k = 1, 2, . . .

and

Γk(η) =





λ, k = 1,

0, k > 0.

The reason why we have used factorial moments and cumulants is explained
in the following way.
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Denote z1 = z1(it) = eit−1. If, for some integer s > 0, the factorial moment
EX(s) exists (i.e., EX(s) < ∞), then

E eitX = E(1 + z1(it))X =
s∑

k=0

EX(k)

k!
zk
1 (it) + o(|t|s)

and

log E eitX =
s∑

k=1

Γk(X)
k!

zk
1 (it) + o(|t|s).

Here the coefficients at zk
1 (it) are factorial moments and factorial cumulants.

Also note that for a Poisson r.v. η with the parameter λ

eit − 1 = z1(it) =
1
λ

log E eitη,

because E eitη = eλ(1−eit) and log E eitη = λ( eit − 1).
Now consider the asymptotic expansions in the approximation by the

Poisson law.
Several studies have been devoted to the construction of such expan-

sions. We can mention the papers of P. Franken [11], S. Shorgin [13] and
A. Barbour [8]. Here two types of expansions of the distribution Fn are
possible. The first type is when the function Fn(x) is expanded in Charlier
polynomials (i.e., in the functions πr(m; λ)). Recall that Charlier polyno-
mials are defined in the following way:

π(m; λ) =
λm

m!
e−λ, m = 0, 1, 2, . . . , πm(m;λ) = 0, m = −1,−2, . . . ,

π1(m; λ) = π(m;λ)− π(m− 1;λ),

πk+1(m;λ) = πk(m; λ)− πk(m− 1;λ) .

Then

m∑

l=0

πk+1(l; λ) = πk(m;λ),

Π(x; λ) =
[x]∑

l=0

π(l; λ) =
[x]∑

l=0

λl

l!
e−λ,
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and then the expansion in Charlier polynomials has the form

Fn(x) = Π([x];λ) +
s∑

r=2

(−1)r cr

r!
πr−1([x];λ) + Rs(x),(1)

where

cr =
[r/2]∑

v=1

c(v)
r , c(v)

r =
r!
v!

∑
r1+...+rv=r

Γr1 . . .Γrv

r1! . . . tv!
, ri ≥ 2;

the quantities cr are usually called Charlier coefficients, and Γl = Γnl =∑kn
j=1 γjl; γjl = γ

(n)
jl = dl

dzl log(EzXnj ) are factorial cumulants of Xnj . It is
known that

|πr(m; λ)| ≤ c
( r

λe

)(r+1)/2
, r = 1, 2, . . . , s,

c =
√

e

(
1 +

√
π

2

)
/2.

Consequently, the order of the ”smallness” of the r-th summand of the sum
on the right-hand side of relation (1) must be determined by the coefficient
cr. However, cr is expressed by factorial cumulants Γl, 2 ≤ l ≤ r. It means
that the order of ”smallness” of the coefficients cr must be determined by
the cumulants Γl, l = 2, r, taking part in the expression of cr. If we assume
that

Γl = Γnl = O(1/nl−1)

(in [11] this case is called the normed one), then

c(ν)
r = O(1/nr−ν) and cr = O(1/nr−[r/2]).

The second type of asympthotic expansions is when the summands on the
right-hand side of relation (1) are regrouped in such a way that the entire
expansion is written as follows:

Fnkn(x) = Π(x;λ) +
s∑

l=1

Bl([x]; λ) + Rs(x),
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where

Bl([x];λ) =
∑ c

(ν)
r

r!
(−1)lπr−1([x]; λ),

and summation is taken over all r and v, for which r− v = l, 1 ≤ v ≤ [r/2].
If condition (2) is fulfilled, then

Bl = O(1/nl).

We have mentioned the papers of P. Franken [11], S. Shorgin [13] and
A. Barbour [8]. In the paper of Franken, the general case was investi-
gated by the method of characteristic functions. However, the remaining
terms Rs(x) in this work have a too complicated structure. By the same
method, in the paper of Shorgin, the final results are obtained in the case,
where the r.v.’s Xnj assume only two values 0 and 1. Barbour, adapting
the Stein-Chen method, has obtained asymptotic expansions for sums of
independent non-negative integer r.v.’s.

Now we state our results. At first we will take s = 3. This means that
only the third moment is finite.

Theorem 5 ([2]). Suppose that independent in each row r.v.’s Xnj , j =
1, . . . , kn, n = 1, 2, . . ., have three finite moments and

λj = λ
(n)
j = EXnj > 0, j = 1, . . . , kn, n = 1, 2, . . . .

Assume that there exists a constant ∆n > 1, satisfying the inequalities

E|X(2)| ≤
2λj

∆n
and E|X(3)| ≤

3!λj

∆2
n

j = 1, . . . , kn, n = 1, 2, . . .

and

1 < ∆n ≤ 1/ max
1≤j≤kn

λj .

Then

P{Snkn ≤ x} = Π(x;λ) +
1
2
Γ2π1([x]; λ) + R3(x) + R,
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where λ =
kn∑
j=1

λj,

sup
x
|R3(x)| <





c1λ
log ∆n

∆2
n

for any λ > 0,

1
∆2

n

(
c2 log ∆n + c3 log λ

)
for λ ≥ 1,

and

|R| ≤ 2
kn∑

j=1

sup
x
|F̃nj(x + ε3)− F̃

(n)
nj (x)|, ε3 =

log ∆2
n

∆2
n

.

Here F̃nj(x) is a part of the distribution function Fnj(x) after rejecting
jumps at the points 0, 1, 2, . . ., i.e.,

F̃nj(x) = Fnj(x)−
∑

m≤x

pnj(m),

pnj(m) = Fnj(m + 0)− Fnj(m− 0).

Moreover, if r.v.’s Xnj are integer and non-negative, then R = 0. If ∆n ≥ 10
(usually ∆n = n) and r.v.’s Xnj are integer, then

sup
x
|R3(x)| <





8λ
∆2

n

, λ > 0,

1
∆2

n

(
6.24 + 1

2 log λ
)

, λ ≥ 1.

Obviously, Theorem 5 is not trivial only if |R| → 0 as ∆n →∞.
In the general case we have

Theorem 6 ([2]). Suppose that independent r.v.’s Xnj , j = 1, kn, n =
1, 2, . . . have s + 1 finite moments, where the s ≥ 3, condition

λj = λ
(n)
j = EXnj > 0, j = 1, kn, n = 1, 2, . . .
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is fulfilled, and there exists a constant ∆n > 1, satisfying inequalities

1 < ∆n ≤ 1/ max
1≤j≤kn

λj

and

E|Xnj(Xnj − 1) . . . (Xnj − l + 1)| ≤ λjl!/∆l−1
n ,

l = 2, s + 1, j = 1, kn.

Then there exist constants c1s, c2s, and c3s such that

P{Snkn ≤ x} = Π(x; λ) +
s−1∑

ν=1

Bν([x]) + Rs(x) + |R̄|,

where λ =
kn∑
j=1

λj,

|R̄| ≤ 2
kn∑

j=1

sup
x

(
F̄nj(x + εs)− F̄nj(x)

)
, εs = log ∆s

n/∆s
n,

sup
x
|Rs(x)| ≤





λ
c1s log ∆s

n
∆s

n
, λ > 0,

c2s log ∆s
n + c3s log λ
∆s

n
, λ > 1.

If ∆n ≥ 10, the r.v.’s Xnj are integer and non-negative, then R̄ = 0 and

sup
x
|Rs(x)| ≤





23s−2λ
2.3 log ∆s

n
∆s

n
, λ > 0,

23s−2 1.7 log ∆s
n + 1.75 log λ
∆s

n
, λ ≥ 1.
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We have defined the polynomials Bν(m) earlier:

Bν(m) =
∑

r−v=ν

c(v)
r

r!
(−1)rπr−1(m);

c(v)
r =

r!
v!

∑
r1+...+rv=r

ri≥2

Γr1 . . . Γrv

r1! . . . rv!

In particular, we have

B1(m) =
Γ2

2!
π1(m; λ),

where π1(m; λ) = π(m; λ)− π(m− 1;λ); π(m;λ) =
λm

m!
e−λ,

B2(m) =
Γ3

3!
π2(m; λ) +

1
2

(
Γ2

2!

)2

π3(m;λ),

B3(m) =
Γ4

4!
π3(m; λ) +

Γ3

3!
Γ2

2!
π4(m; λ) +

1
3

(
Γ2

2!

)3

π5(m;λ), . . .

To prove our theorems, we used the theorem obtained by the
authors [7].

Theorem 7 ([7]). Suppose F is a distribution function, defined on R, the
set of jump points of which is AF . Let G be a discrete (jumps) function of
bounded variance, defined on R, too. Let

AF ⊇ AG = {. . . , x−1, x0, x1, . . .}

and G(−∞) = F (−∞) = 0. Then

sup
x
|F (x)−G(x)| ≤ IT + δF U(x)

2U(x)− 1
,

where
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IT =
1
2π

T∫

−T

|f(t)− g(t)|
|t| dt,

f(t) =

∞∫

−∞
eitx dF (x), g(t) =

∑

xj∈AG

eitxj (G(xj + 0)−G(xj − 0)),

δF = max
j

(F (xj+1 − 0)− F (xj + 0)) ,

U(x) =
∫

|u|<x

p(u) du, p(u) =
1
2π

(sinu/2
u/2

)2
.

In our case, the Poisson distribution Π(x; λ) was taken instead of G.
Further we investigated probabilities of large deviations.
Recall that the studies of large deviation probabilities follow two main

trends. The works following the first trend are associated with the large
deviation principle. In this case one considers the behaviour of large devia-
tion probabilities within an accuracy of logarithmic equivalence, mainly in
functional limit theorems and empiric processes.

The other trend in which we worked is simply the asymptotic analysis of
distribution tails in various integral limit theorems, when the approximating
distributions are mainly Gaussian ones. Later on Poisson approximations
of large deviations started to be investigated (also apprpximations by χ2 as
well as infinitely divisible distributions).

We mention several papers ([1], [10], [9]), in which large deviation the-
orems for sums Sn = Xn1 + . . . + Xnkn of independent in each row (series)
random variables X

(n)
i , i = 1, 2, . . . , kn are studied, and in which the usual

normal approximation for the sum Sn is replaced by a Poisson approxima-
tion. As mentioned above we have also investigated the probabilities of
large deviations in the approximation by the Poisson law. But instead of
the sum Sn, we have studied an r.v. X, the factorial cumulants of which
satisfy some growth conditions. Of course, instead of X we can take a sum
Sn of a row (series) of independent r.v.’s or some statistics, or linear forms
of such r.variables.
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Lemma 8 ([3]). If the random variable X takes non-negative integer
values, EX = λ > 0, and

(S) |Γk(X)| ≤ k!λ
∆k−1

for all k ≥ 2 and some ∆ > 1, then in the interval

λ ≤ x <
1
6e

λ∆

the relation of large deviations

P{X ≥ x}
1−Π(x; λ)

= eL(x)
(
1 + θ1

x

∆

)

holds. Here

θ1 = θ

(
22 + max

(
20
λ

,
121√

x

))
, |θ| ≤ 1,

(here θ1 is calculated for ∆ > 5max(1, 1/λ)).

L(x) = −(x− λ)2

λ∗∆

{
∆Γ2

2λ∗
+

∞∑

k=1

bk

(
x− λ

λ∗∆

)k
}

−x log

{
1 +

∞∑

k=1

ak

(
x− λ

λ∗∆

)}
,

λ∗ = λ + Γ2 = λ

(
1 + θ

2
∆

)
, |θ| ≤ 1,

both series on the right-hand side of the latter equality converge as
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x− λ

λ∗
<

1
6e

∆,

and the coefficients ak and bk are expressible in terms of the first k + 2 and
k + 1 factorial cumulants, respectively.

Remark. It could seem that condition (S) is hardly verifiable. But here
the next auxiliary lemma, proved by the authors, can be used.

Lemma 9 ([4]). Suppose that for r.v.’s Xnj from the sequence of series
with means EXnj = λ

(n)
j > 0, j = 1, kn, there exists a constant ∆n > 1

such that

E|X(l)| ≤ λ
(n)
j l!/∆l−1

n , l = 2, s, j = 1, kn.

Then for factorial cumulants Γjl = Γl(Xnj) of the r.v. Xnj the estimates

|Γl(Xnj)| ≤ 2λ
(n)
j l!/

(
∆n

2

)l−1

, l = 2, s, j = 1, kn

hold.

The conclusion of this lemma is as follows. To know the growth rate of
factorial cumulants it suffices to know the upper estimates of factorial mo-
ments. But we know that it is not very difficult to estimate the factorial
moments, as well as simple moments from above. Therefore, if we can es-
timate the factorial moments from above of one or another quantity which
stands in place of X, then we can estimate probabilities of large deviations
of this quantity at once.

So we can also rewrite Lemma 8 for that quantity at once.
For example, if P{Xnj = 1} = λ

n , P{Xnj = 0} = 1− λ
n , j = 1, n, then

it is easy to check that

Γk(Sn) =
(−1)k−1(k − 1)!λk

nk−1
, ∀ k ≥ 1.
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We see that here ∆ = ∆n = n
λ and, consequently,

P{Sn > x}
1−Π(x;λ)

= eL(x)
(
1 + θ1

x

∆

)
, λ ≤ x <

1
6e

n.

Next we proved the following inequality of large deviations.

Lemma 10 ([3]). Let the r.v. X take non-negative integer values, EX =
λ > 0, and

|Γn(X)| ≤ (k − 1)!λ
∆k−1

for all k ≥ 2 and some ∆ > 1. Then

P{X ≥ x} ≤ exp
{
−x log

x

λ
+ x− λ +

x− λ

λ∆

}

≤ π(x; λ) ex(x−λ)/λ∆
√

2πx e1/12x

for 0 < x− λ ≤ λ∆, and

P{X ≥ x} ≤ exp
{
−x log

x

λ
+ λ∆log

(
1 +

x− λ

λ∆

)
+ x log

(
1 +

x− λ

λ∆

)}

for x− λ ≥ λ∆. Here π(x; λ) = e−λλx

x! , x > 0.

Our next result belongs to the case, where instead of condition (S), a weaker
condition is satisfied.

Theorem 11 ([4], [5]). Let X be a nonnegative r.v. with EX = λ > 0 and
let
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(Sγ) |Γk(X)| ≤ λ(k!)1+γ

∆k−1
, γ > 0,

for all k ≥ 2 and some ∆. Then, in the interval 1 < x < λ∆γ, where

∆γ =
0, 3
2 e

(∆
3

)1/(1+2γ)

the relation of large deviations

P{X > x}
1−Π(x; λ)

= eLγ(x)
(
1 + θ1

x

λ
+ θ2

√
xmax

k≥0
P{k < X < k + 1}

)

holds.
Moreover, if the r.v. X is nonnegative and integer, then

P{X > x}
1−Π(x;λ)

= eLγ(x)
(
1 + θ1

x

λ

)
.

Here the power series

Lγ(x) = −(x− λ)2

λ∗∆

{
δΓ2

2λ∗
+

p∑

k=1

bk

(x− λ

λ∗∆

)k
}

−x log
{

1 +
p∑

k=1

ak

(x− λ

λ∗∆

)k
}

, p = 2 +
1
2γ

.

Theorem 12 ([5]). Let X be a nonnegative r.v. with EX = λ > 0 and the
condition

|Γk(X)| ≤ λ((k − 1)!)1+γ

∆k−1
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be fulfilled for all k ≥ 2 and some ∆ > 1 and γ ≥ 0. Then for all x > λ,

P{X≥x}≤exp

{
− x log

x

λ
+x log

(1 + x
λ∆)xγ/(1+γ)

1− λ
x +(λ

x + 1
∆)xγ/(1+γ)

+λ∆log
λ+ x

∆

λ+ λ
∆

}

holds.

We have obtained ([6]) similar, only more complicated results for probabil-
ities of large deviations in the approximation by a compound Poisson law,
the characteristic function of which is

log fY (t) = λ
k∑

m=1

( eitm − 1)pm, λ > 0, pm > 0,
N∑

m=1

pm = 1.(2)

It is possible to express such an r.v. Y with the distribution, whose loga-
rithm of the characteristic function is (2), as the sum

Y
d= ξ1 + · · ·+ ξη

of a random number of iid r.v.’s ξ1, ξ2, . . ., where

P{ξ1 = m} = pm, m = 1, . . . , N

and η has the Poisson distribution with the parameter λ > 0:

P{η = k} = e−λ λk

k!
, k = 1, 2, . . . .

Evidently, EY = λEξ1 = λα1, α1 = Eξ1.
Let X be an r.v. taking integer nonnegative values with EX = EY and

EXs < ∞ with s > 0. We wish to approximate the distribution of X by
the distribution of Y .

How to select cumulants Γ̃k(X), k = 1, 2, . . . in the approximation by
the compound Poisson distribution?

Let us consider the following example.
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Let X = Xn1 + · · ·+ Xnn, where Xni are iid r.v.’s and

P{Xn1 = m} =
λ

n
pm, m = 1, N,

P{Xn1 = 0} = 1− λ

n
.

Hence

log fX(t) = n log
(

1− λ

n
+

N∑

m=1

eitm λpm

n

)

= n log
(

1 +
λ

n

N∑

m=1

( eitm − 1)pm

)

= n log
(
1 +

λ

n
z(it)

)
, z(it) =

N∑

m=1

( eitm − 1)pm,

or

log fX(t) =
∞∑

k=1

Γ̃k

k!
zk(it),

where

Γ̃k(X) =
(−1)k−1λk(k − 1)!

nk−1
, k = 1, 2, . . .

This example shows that one ought to take coefficients in the expansion of
log fX(t) as cumulants Γ̃k on the base z(it).

Then, if we want to obtain the theorem of large deviations for X when
approximating by Y , the condition

(S̃)
∣∣∣Γ̃k(X)

∣∣∣ ≤ λk!
∆k−1

, k = 2, 3, . . . , Γ̃1(X) = λ

must be fulfilled.
In our example we may assume ∆ = n/λ.
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