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1. Introduction

A random field z(t), t ∈ D, of the form (1) is observed at locations ξ1, . . . , ξn.
Kriging means optimal predicting the unobserved values of the random
field z. The procedure of kriging is well-known (see e.g. Krige (1951),
Cressie (1991), Yakowitz–Szidarovszky (1985), and Berke (1998)). Our aim
is to study the result of kriging when locations ξ1, . . . , ξn, where the field is
observed, are not known precisely.

A similar problem was studied in Fazekas–Kukush (1999) but another
mathematical setting was used there. In that paper, the location ξi was
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considered as a non-random point, but we observed ξi with a random error.
Therefore the appropriate tool was the deconvolution method often used for
estimation in functional errors-in-variables models (see e.g. Fazekas–Baran–
Kukush–Lauridsen (1999)).

In this paper, we consider that ξ1, . . . , ξn are random and we do not
know their actual value but we have certain knowledge about their distri-
bution. In Section 2, we introduce a measurement error model for random
fields prediction problems. In Section 3, a modification of the universal krig-
ing is given. Our model and kriging method is similar to those proposed in
Gabrosek–Cressie (2002). In Gabrosek–Cressie (2002) the objective func-
tion is the first term of our objective function Q(λ) in (8). In Theorem 3, we
prove that under some conditions the L2-error of our predictor is asymptoti-
cally 0. Another possibility for prediction in our case is to use the universal
kriging procedure without any modification for data with error. This is
called naive kriging and is studied in Section 4. In Section 5, we present a
small set of simulation results. It shows that in the case of location errors
neither naive kriging nor modified kriging can reproduce the precision of
universal kriging with error free locations. The modified kriging is better
than the naive kriging and moreover, it is more stable.

2. A measurement error model for random fields

2.1. The model and the assumptions

Consider the following linear geostatistical model

z(t) =
∑k

j=0
βjfj(t) + δ(t) + ε(t), t ∈ D ⊆ Rp,(1)

where p is a fixed positive integer, fj(t) are known functions, f0(t) ≡ 1,
βj are unknown parameters, j = 0, 1, . . . , k, δ(t) are random error terms
with Eδ(t) = 0, Eδ2(t) < ∞, t ∈ D. Random measurement error terms
ε(t), t ∈ D, are assumed to be independent of δ(t), t ∈ D. We shall
always suppose that the functions fj(t), j = 0, . . . , k, are measurable and
{ε(t), t ∈ D}, {δ(t), t ∈ D} are measurable random fields. The field {ε(t)}
is a white noise, Eε(t) = 0, σ2 = Eε2(t) < ∞, t ∈ D. We assume that ε(t)
is due to the measuring procedure and therefore we can assume that σ2 is
known.
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We are interested in the field without an observation error, i.e., in

z0(t) =
∑k

j=0
βjfj(t) + δ(t), t ∈ D ⊆ Rp,(2)

but we cannot observe it directly. The observed random field is z(t).
Describe the scheme of observations:

zi = z(ξi) =
∑k

j=0
βjfj(ξi) + δ(ξi) + ε(ξi), i = 1, 2, . . . , n,

where ξ1, ξ2, . . . , ξn ∈ D are random. Moreover, we do not know the precise
value of ξi. We assume that the distribution of ξi is known, it is Pξi . We use
especially the expectation ξ0

i = Eξi. We interpret it as follows. We intend to
observe the field at location ξ0

i . However, because of some measurement er-
ror the actual observation is made somewhere around ξ0

i , namely at location
ξi.

We assume that ξ1, . . . , ξn are independent, and the three sets {ξi :
i = 1, . . . , n}, {δ(t) : t ∈ D}, {ε(t) : t ∈ D} of random variables are
independent of one another.

The observations in the matrix form are the following:

Z(ξ) = F (ξ)β + ∆(ξ) + ε(ξ),

where

ξ =




ξ1
...

ξn


 , F (ξ) =




f0(ξ1) · · · fk(ξ1)
...

...
f0(ξn) · · · fk(ξn)


 =




f>ξ1
...

f>ξn


 ,

β =




β0
...

βk


 =

(
β0

βe0

)
, Z = Z(ξ) =




z(ξ1)
...

z(ξn)


 =




z1
...

zn


 ,

∆ = ∆(ξ) =




δ(ξ1)
...

δ(ξn)


 , ε = ε(ξ) =




ε(ξ1)
...

ε(ξn)


 .
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Let s0 ∈ D be fixed. Our aim is to predict z0(s0) using Z(ξ) and the distri-
bution of ξ. The universal kriging gives the best linear unbiased predictor
(see Krige (1951), Cressie (1991)). It approximates z0(s0) with a linear
function of Z = Z(ξ):

z0(s0) ≈
∑n

i=1
λizi = λ>Z,

where λ = (λ1, . . . , λn)> is a vector to be determined. The unbiasedness
Ez0(s0) = E

∑n
i=1 λizi is equivalent to

fj(s0) =
∑n

i=1
λiEfj(ξi), j = 0, 1, . . . , k,(3)

in other words f(s0) = E(F (ξ))>λ, where f(s0) = (f0(s0), f1(s0), . . . , fk(s0))>.
We remark that by the constraint (3) with j = 0, we have

∑n

i=1
λi = 1.

To obtain the best linear unbiased predictor we have to solve

min
λ
E

(
z0(s0)− λ>Z

)2

under the constraint (3). Let

γ(h) = (1/2) var (z0(x + h)− z0(x)) ,

where x, x + h ∈ D, be the semivariogram of z0 (we assume that it does
not depend on x, i.e., the field is intrinsically stationary). We assume that
the semivariogram is known. We remark that the semivariogram of the
observed random field z(t) = z0(t) + ε(t) is γ(h) + σ2 if h 6= 0; and it is
equal to γ(0) = 0 if h = 0 (as ε(t) is a white noise). Let

Γ(ξ) = (Γij(ξ))
n
i,j=1,(4)

where

Γij(ξ) = γ(s0 − ξi) + γ(s0 − ξj)− γ(ξi − ξj).
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2.2. The mean squared error

Proposition 1. Assume (3). Then the L2-distance of z0(s0) and
∑n

i=1 λizi

is

E
(
z0(s0)−

∑n

i=1
λizi

)2

= λ>EΓ(ξ)λ + σ2
∑n

i=1
λ2

i + β>e0
(∑n

i=1
λ2

i Si

)
βe0,

(5)

where Si is the covariance matrix of (f1(ξi), . . . , fk(ξi))> while
βe0 = (β1, . . . , βk)>.

Proof. The first part of the calculation is given in a more general setup.
Let β0, . . . , βk be random variables independent of {ξi}, {δ(t)}, {ε(t)} (a
particular case is when β0, . . . , βk are constants). From the constraint (3)
we use only the case j = 0, that is

∑n
i=1 λi = 1.

To find the L2-error, consider the following calculation.

E
{(

z0(s0)−
∑n

i=1
λizi

)2∣∣∣ξ
}

= E
{(

A1 + A2 + A3

)2∣∣∣ξ
}

= E
{

A2
1

∣∣∣ξ
}

+ E
{

A2
2

∣∣∣ξ
}

+ E
{

A2
3

∣∣∣ξ
}

+ 2E
{

A1A2

∣∣∣ξ
}

+ 2E
{

A1A3

∣∣∣ξ
}

+ 2E
{

A2A3

∣∣∣ξ
}

,

(6)

where

A1 =
∑k

j=0
βj

(
fj(s0)−

∑n

i=1
λifj(ξi)

)
,

A2 = δ(s0)−
∑n

i=1
λiδ(ξi), A3 = −

∑n

i=1
λiε(ξi).
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Now

E{A1A2|ξ} =
∑k

j=0

[(
fj(s0)−

∑n

i=1
λifj(ξi)

)
E{βjA2|ξ}

]
= 0,

because, by independence,

E{βjA2|ξ = x} = E
{

βj

(
δ(s0)−

∑n

i=1
λiδ(xi)

)}
= 0

(here x = (x1, . . . , xn)> ). Similarly

E{A1A3|ξ} = 0, E{A2A3|ξ} = 0.

By independence

E{A2
3|ξ = x} = E

[∑n

i=1
λiε(xi)

]2
= σ2

∑n

i=1
λ2

i ,

E{A2
3|ξ} = σ2

∑n

i=1
λ2

i .

As
∑n

i=1 λi = 1,

E{A2
2|ξ = x} = E

{∑n

i=1
λi(δ(s0)− δ(xi))

}2
= λ>Γ(x)λ,

E{A2
2|ξ} = λ>Γ(ξ)λ.

Using that
∑n

i=1 λi = 1 and f0 ≡ 1,

E{A2
1|ξ} = E

(∑n

i=1
λi

∑k

j=1
βj [fj(s0)− fj(ξi)]

)2
.
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Now substituting these into (6), we obtain

E
(
z0(s0)−

∑n

i=1
λizi

)2
= λ>EΓ(ξ)λ + σ2

∑n

i=1
λ2

i

+E
(∑n

i=1
λi

∑k

j=1
βj [fj(s0)− fj(ξi)]

)2
.

(7)

From now on, we consider non-random β0, . . . , βk and use all equations in
the constraint (3).

EA2
1 = D2A1 = D2

(∑n

i=1
λi

∑k

j=1
βj [fj(s0)− fj(ξi)]

)

=
∑n

i=1
λ2

iD2
(∑k

j=1
βj [fj(s0)− fj(ξi)]

)
=

∑n

i=1
λ2

iD2
(∑k

j=1
βjfj(ξi)

)

=
∑n

i=1
λ2

i β
>
e0 Siβe0 = β>e0

(∑n

i=1
λ2

i Si

)
βe0,

where Si is the covariance matrix of (f1(ξi), . . . , fk(ξi))>. Now, substituting
this into (7), we obtain (5).

3. A modification of kriging

3.1. The new predictor

Our aim is to minimize the L2-distance of z0(s0) and
∑n

i=1 λizi according
to λ. However, the expression in (5) depends on the unknown value of β.

Assume that ‖βe0‖ ≤ R, where R is a fixed positive constant, and ‖βe0‖
is the Euclidean norm of the vector βe0. Therefore we have to minimize

max
‖βe0‖≤R

E
(
z0(s0)−

∑n

i=1
λizi

)2
.
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Therefore the objective function is

Q(λ) = λ>EΓ(ξ)λ + σ2
∑n

i=1
λ2

i +
∥∥∥

∑n

i=1
λ2

i Si

∥∥∥R2,(8)

where ‖A‖ denotes the spectral norm of the matrix A, i.e., the maximal
eigenvalue of A when A is symmetric and positive semidefinite. We have
to minimize (8) under the constraint (3). The solution will be denoted by
λ̂ = (λ̂1, . . . , λ̂n)>.

We call this method modified kriging. The predictor

ẑ(s0) =
∑n

i=1
λ̂izi

will be called the modified kriging predictor. For this procedure we need
the knowledge of the semivariogram γ, the functions fi (γ and fi are also
used in the universal kriging), the distributions of ε(t) and ξi, moreover
the upper bound R. We consider the distributions of ε(t) and ξi to be
the characteristics of the measuring procedure therefore they are known
previously. However, we have to find R.

In Gabrosek–Cressie (2002) for a similar measurement error setting the
objective function was λ>EΓ(ξ)λ with the same constraint as (3).

Proposition 2. By Lagrange multipliers one can get that the minimum of

λ>Γλ

under constraint f = F>λ is attained at

λ̂ = Γ−1F (F>Γ−1F )−1f.(9)

Example 1. Kriging a field with two regression parameters. In this case
the model is

z0(t) = β0 + β1f1(t) + δ(t).
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Now Si = var(f1(ξi)), i = 1, . . . , n, are one-dimensional, therefore the
objective function is

Q(λ) = λ>
(
EΓ(ξ) + σ2In + R2diag(S1, . . . , Sn)

)
λ.

We have to minimize this function under the constraints

∑n

i=1
λi = 1,

∑n

i=1
λiEf1(ξi) = f1(s0).

The solution is obtained by inserting Γ = EΓ(ξ)+σ2In+R2 diag(S1, . . . , Sn),

F =




1 Ef1(ξ1)
...

...
1 Ef1(ξn)




and f = (1, f1(s0))> into (9).

3.2. Asymptotic properties of modified kriging

Our aim is to prove that the error of modified kriging tends to zero if some
regularity conditions are satisfied. We consider a fixed random field z0(t)
of the form (2) which has to be predicted and another fixed random field
z(t) of the form (1) which is observed at some locations. The locations of
observations are not fixed. During the m-th step we have observations at
n = n(m) points (n(m) →∞, as m →∞):

ξ1 = ξ
(m)
1 , ξ2 = ξ

(m)
2 , . . . , ξn = ξ

(m)
n(m).

(To avoid difficult notation we omit m, but we emphasize that the sites
of observations depend on m.) The sites are random and their centres are
ξ0
i = Eξi, i = 1, 2, . . . , n.

We have on our mind the so called infill asymptotics, that is the sites ξ0
i ,

i = 1, 2, . . . , n, become dense in the fixed domain D, as m →∞. Moreover,
we think that the type of distribution of ξi is fixed but the variance tends
to zero, as m → ∞. We also consider that the functions fi(t) and the
semivariogram γ satisfy some analytical conditions (γ(h) is continuous at
h = 0, say).
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However, to obtain flexible conditions we shall express them in terms of
expectations of certain functions of the random error terms. Then one can
check them for particular semivariograms, mean value functions fi (e.g. for
polynomials), and error terms (e.g. for normally distributed ones). We shall
give conditions for kriging at a fixed point s0.

Assume that there is a sequence r = r(m) of positive integers tending to
infinity such that among the locations of observations ξi there are r points

ξ1∗ = ξ
(m)
1∗ , ξ2∗ = ξ

(m)
2∗ , . . . , ξr∗ = ξ

(m)
r(m)∗

with the following properties:

αj ≤ 1
r
, j = 1, . . . , r,(10)

limm→∞
∑r

j=1
αj = 0,(11)

where

αj = max
0≤i≤k

‖fi(s0)− Efi(ξj∗)‖ , j = 1, . . . , r.(12)

Conditions (10) and (11) mean that a subsequence of the locations ξi

converges to s0 in some sense.
Assume that among the locations ξi there are k + 1 sites t0, t1, . . . , tk,

such that the matrix

Φ̆ =
(
Efi(tj)

) k

i,j=0
is invertible,(13)

‖Φ̆−1‖ ≤ K,(14)

where K is a finite constant not depending on m. This condition generally
means that the locations t0, t1, . . . , tk do not converge to s0. Let

ξ̆ = (ξ1∗, . . . , ξr∗, t0, t1, . . . , tk)>

be the vector of our specific locations. Let S̆i be the covariance ma-
trix Si (defined in Proposition 1) calculated at the i-th coordinate of ξ̆.
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Assume that

‖S̆i‖ ≤ L, i = 1, . . . , r + k + 1,(15)

where L is a finite constant not depending on m.
Let Γ(ξ̆) be the matrix Γ in (4) calculated at ξ̆ and assume that

∣∣∣∣
(
EΓ(ξ̆)

)
i,j

∣∣∣∣ ≤ M, i, j = 1, . . . , r + k + 1,(16)

where M is a finite constant not depending on m. Moreover,

M1 =
1
r2

∑r

i=1

∑r

j=1

∣∣∣EΓ(ξ̆)i,j

∣∣∣ → 0, as m →∞.(17)

Theorem 3. Let R be an arbitrary upper bound of ‖βe0‖. Let λ̂ minimize
(8) under the constraint (3). Assume that (10)–(17) are satisfied. Then for
the modified kriging predictor ẑ(s0)

lim
m→∞E (z0(s0)− ẑ(s0))

2 = 0.(18)

Proof. We apply some ideas of the proof of Theorem 2.1 in Yakowitz–
Szidarovszky (1985). Consider the linear predictor

z̆ =
∑r

j=1

[
1
r
− αj

]
z(ξj∗) +

[∑r

j=1
αj

] ∑k

i=0
νiz(ti),(19)

where the coefficients ν0, . . . , νk are unknown. We need unbiased predictors,
therefore (3) is to be satisfied:

[∑r

j=1
αj

]
Φ̆ν = f − Φ∗b,(20)

where f = f(s0) = (f0(s0), f1(s0), . . . , fk(s0))>, b = (1
r − α1, . . . ,

1
r − αr)>,

ν = (ν0, . . . , νk)> and

Φ∗ =
(
Efi(ξj∗)

) k r

i=0, j=1
.
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Assume now that
∑r

j=1 αj 6= 0. As Φ̆ is invertible, therefore (20) has a
solution ν, so there is an unbiased linear predictor of the form (19). We
shall use that choice of ν.

We have to prove that ν is bounded. Therefore consider

f − Φ∗b =
[∑r

j=1
αj

]
f + Ab,

where the (i, j)-th element of the matrix A is

ai,j = fi(s0)− Efi(ξj∗), i = 0, . . . , k, j = 1, . . . , r.

Now we use the max-norm for vectors and the corresponding row-norm for
matrices (both denoted by ‖ . ‖∞).

‖Ab‖∞ ≤ ‖A‖∞‖b‖∞ = max
0≤i≤k

{∑r

j=1
|ai,j |

}
‖b‖∞

≤
[∑r

j=1
αj

]
max
0≤i≤k

{∣∣∣∣
1
r
− αi

∣∣∣∣
}
≤

∑r

j=1
αj ,

because of (12) and (10). Therefore (20) and (14) imply

‖ν‖∞ ≤ ‖Φ̆−1‖∞
(
‖f‖∞ + 1

)
≤ K

(
‖f‖∞ + 1

)
.

If ‖βe0‖ ≤ R, then for the mean-square error of the modified kriging predictor
ẑ(s0) we have

E
(
z0(s0)− ẑ(s0)

)2
≤ λ̂>EΓ(ξ)λ̂ + σ2‖λ̂‖2 +

∥∥∥
∑n

l=1
λ̂2

l Sl

∥∥∥R2

≤ λ̆>EΓ(ξ̆)λ̆ + σ2‖λ̆‖2 +
∥∥∥

∑r+k+1

l=1
λ̆2

l S̆l

∥∥∥R2.(21)
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Here

λ̆ =
(

1
r
− α1, . . . ,

1
r
− αr, ν0

∑r

j=1
αj , . . . , νk

∑r

j=1
αj

)>

is the coefficient vector of the unbiased predictor z̆.
Now it is enough to prove that (21) converges to 0, as r = r(m) →∞.

We have

‖λ̆‖2 ≤ 1
r

+ (k + 1)‖ν‖2
∞

[∑r

j=1
αj

]2
.

Therefore σ2‖λ̆‖2 → 0. Because of (15),
∥∥∥ ∑r+k+1

l=1 λ̆2
l S̆l

∥∥∥R2 → 0.

Breaking EΓ(ξ̆) into appropriate blocks, using conditions (16), (17) and
the form of λ̆, we obtain that λ̆>EΓ(ξ̆)λ̆ → 0. Therefore each summand of
(21) converges to 0.

During the proof we assumed that
∑r

j=1 αj 6= 0. Now suppose that∑r
j=1 αj = 0. Then z̆ =

∑r
j=1

1
rz(ξj∗) is an unbiased predictor. For this

predictor the value of the objective function Q converges to 0, because
r = r(m) →∞, as m →∞.

Corollary 4. From the above calculation we can get an explicit formula for
the L2-error. Breaking EΓ(ξ̆) into four blocks (of sizes r × r, r × (k + 1),
(k + 1)× r and (k + 1)× (k + 1) ) gives

E
(
z0(s0)− ẑ(s0)

)2
≤ M1 + M(k + 1)2‖ν‖2

∞
[∑r

j=1
αj

]2

+2M(k + 1)‖ν‖∞
[∑r

j=1
αj

]
+ σ2‖λ̆‖2 + ‖λ̆‖2LR2.

3.3. Fields with Gaussian semivariogram

Example 2. We describe the modified kriging when z0(t) is a random
field with the Gaussian semivariogram γ(h), the polinomial trend func-
tion (i.e., fi(t) is a power function for each i), and the location ξi is
normally distributed for each i. We calculate the ingredients for the
objective function Q in (8) and for the constraint (3). Moreover, we
check if the conditions of L2-consistency in Theorem 3.4 can be fulfilled.
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For simplicity, we give the details for a random field over the plain, that is
t ∈ D ⊆ R2.

Let ξi be normally distributed around the centre ξ0
i , namely

ξi =
(

ξi,1

ξi,2

)
∼ N2

((
ξ0
i,1

ξ0
i,2

)
, d2I

)
,

where I is the identity matrix of size 2 × 2. Therefore the 2n random
variables ξi,1, ξi,2, i = 1, . . . , n, are independent normal.

A point of the plain we shall denote by t = (x, y)>. We predict the field
at the location s0 = (s0,1, s0,2)>. We consider the polinomial trend function

β0 + β1x + β2y + β3x
2 + β4y

2.

The moments of the normal distribution are easily calculated. However, for
convenience, we give the following list which is necessary to describe the
constraints fj(s0) =

∑n
i=1 λiEfj(ξi), j = 0, 1, . . . , k, in (3).

f0(t) = 1, Ef0(ξi) = 1, f0(s0) = 1;

f1(t) = x, Ef1(ξi) = ξ0
i,1, f1(s0) = s0,1;

f2(t) = y, Ef2(ξi) = ξ0
i,2, f2(s0) = s0,2;

f3(t) = x2, Ef3(ξi) = d2 + (ξ0
i,1)

2, f3(s0) = s2
0,1;

f4(t) = y2, Ef4(ξi) = d2 + (ξ0
i,2)

2, f4(s0) = s2
0,2.

From here we also see that the quantities αj = max0≤i≤k ‖fi(s0)− Efi(ξj∗)‖,
j = 1, . . . , r, can satisfy conditions (10) and (11) if and only if there is a
subsequence of the locations ξi tending to s0 and the dispersion d converges
to 0, as m →∞.

It is seen that one can choose the locations ξi, i = 1, . . . , n, such that
among them there are k + 1 sites t0, t1, . . . , tk, such that the matrix Φ̆ =(
Efi(tj)

) k

i,j=0
is invertible and its inverse is bounded, i.e., condition (14) is

satisfied.
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Now we calculate Si, i.e., the covariance matrix of (f1(ξi), . . . , fk(ξi))>. Us-
ing the moments of the normal distribution, we get for i = 1, . . . , n, that

Si =




d2 0 2d2ξ0
i,1 0

0 d2 0 2d2ξ0
i,2

2d2ξ0
i,1 0 2d4 + 4d2(ξ0

i,1)
2 0

0 2d2ξ0
i,2 0 2d4 + 4d2(ξ0

i,2)
2




.

Now, it is easy to see that if the points ξ1∗, . . . , ξr∗, t0, t1, . . . , tk are
chosen from a bounded region, then S matrices calculated at these points
are bounded, i.e., condition (15) is satisfied.

Now, we turn to the matrix Γ. Let γ be the Gaussian semivariogram

γ(h) = ω
(
1− exp (− ‖h‖2/a2)

)

for h ∈ R2, where ‖h‖2 = h2
1 + h2

2. The (i, j)-th element of Γ(ξ) is

Γij(ξ) = γ(s0 − ξi) + γ(s0 − ξj)− γ(ξi − ξj) =(22)

ω
{

exp [−‖ξi− ξj‖2/a2]−exp [−‖s0− ξi‖2/a2]−exp [−‖s0− ξj‖2/a2]+1
}

,

i, j = 1, . . . , n. Here

s0 − ξi ∼ N2

(
s0 − ξ0

i , d2I
)
, ξi − ξj ∼ N2

(
ξ0
i − ξ0

j , 2d2I
)
,

if i 6= j; while ξi− ξj = 0, if i = j. The squared norm of these variables can
be described by χ2 distribution:

if X ∼ N2 (m, I) , then ‖X‖2 ∼ χ2
2(‖m‖2),
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where χ2
2(‖m‖2) denotes the chi-square distribution with degree of freedom

2 and with noncentrality parameter ‖m‖2. We know the moment generating
function of the chi-square distribution χ2

l (p):

E exp(vχ2
l (p) = (1− 2v)−l/2 exp

(
pv

1− 2v

)
.(23)

Actually, we have to calculate the expectation of Γi,j(ξ). Applying (23), we
can obtain the expectation of each summand in (22). We have

E exp
[
− ‖s0 − ξj‖2/a2

]
= E exp

[
−d2

a2

‖s0 − ξj‖2

d2

]

=
a2

2d2 + a2
exp

[
−(s0,1 − ξ0

j,1)
2

2d2 + a2

]
exp

[
−(s0,2 − ξ0

j,2)
2

2d2 + a2

]
;

E exp
[
− ‖ξi − ξj‖2/a2

]
= E exp

[
−2d2

a2

‖ξi − ξj‖2

2d2

]

=
a2

4d2 + a2
exp

[
−(ξ0

i,1 − ξ0
j,1)

2

4d2 + a2

]
exp

[
−(ξ0

i,2 − ξ0
j,2)

2

4d2 + a2

]
,

if i 6= j, and it is equal to 1, if i = j. Therefore we can calculate all
ingredients of the objective function Q in (8).

Finally, we can see that condition (16) for EΓ(ξ̆) is automatically sat-
isfied. Moreover, condition (17) is also satisfied if there is a subsequence
of the locations ξi tending to s0 and the dispersion d converges to 0, as
m →∞.

Therefore in this example we obtained realistic conditions which imply
(18).
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4. Naive kriging

Naive kriging means that we apply the universal kriging procedure as if ξ0
i ,

i = 1, 2, . . . , n, were the exact locations of the observations. Therefore we
ignore information about the distribution of ξi.

As universal kriging produces the best linear unbaised predictor, we
approximate z(s0) with a linear funcion:

z0(s0) ≈
∑n

i=1
λizi.

With exact sites the unbiasedness is

fj(s0) =
∑n

i=1
λifj(ξ0

i ), j = 0, 1, . . . , k.(24)

To obtain the predictor we have to solve the minimum problem

min
λ
E

(
z0(s0)−

∑n

i=1
λizi

)2

under constraints (24). With exact sites the value of this objective function
is

QN(λ) = λ>
(
Γ(ξ0) + σ2I

)
λ,(25)

where ξ0 = (ξ0
1 , . . . , ξ

0
n)>. We have to minimize (25) under constraints (24).

Denote the solution of this minimization problem by λ̃. Then the naive
kriging gives the prediction z0(s0) ≈

∑n
i=1 λ̃izi.

One can easily calculate the L2-error of this predictor:

H(λ̃) = E
(
z0(s0)−

∑n

i=1
λ̃izi

)2

= λ̃>EΓ(ξ)λ̃ + σ2
∑n

i=1
λ̃2

i + β>e0
(∑n

i=1
λ̃2

i Si

)
βe0 + M̃(β),

where M̃(β) =
(∑n

i=1 λ̃i
∑k

j=1 βj

[
fj(ξ0

i )− Efj(ξi)
] )2

.
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Example 3. Let fj(t), j = 0, 1, . . . , k, be constant or linear functions.
Then Efj(ξi) = fj(ξ0

i ) for every i and j. Therefore constraints for the
modified kriging and those for the naive kriging (i.e., (3) and (24) ) coincide.
Moreover, the form of the L2-errors are also the same, because in this special
case

H(λ̃) = λ̃>EΓ(ξ)λ̃ + σ2
∑n

i=1
λ̃2

i + β>e0
(∑n

i=1
λ̃2

i Si

)
βe0.(26)

(We recall that, by (5), the L2-error of the modified kriging is H(λ̂), where
function H is given in (26), but λ̂ is the solution of the minimum problem
(8) under the constraint (3).)

Therefore for the L2-error of the modified kriging and that of the naive
kriging we obtain:

sup
‖βe0‖≤R

E
(
z0(s0)−

∑n

i=1
λ̂izi

)2
≤ sup
‖βe0‖≤R

E
(
z0(s0)−

∑n

i=1
λ̃izi

)2
.(27)

Example 4. Let k = 0, and f0(t) ≡ 1. Now we are in the situation of
ordinary kriging

z0(t) = β0 + δ(t).

Inequality (27) for the L2-error of the modified kriging and that of the naive
kriging now is as follows:

E
(
z0(s0)−

∑n

i=1
λ̂izi

)2
≤ E

(
z0(s0)−

∑n

i=1
λ̃izi

)2
.(28)

Here the left hand side is the value of the objective function Q(λ) =
λ>

(
EΓ(ξ) + σ2I

)
λ at λ̂, while the right hand side is its value at λ̃. More-

over, λ̂ is the minimum of Q(λ) under constraint e>λ = 1. On the other
hand, λ̃ is the minimum of QN(λ) = λ>

(
Γ(ξ0) + σ2I

)
λ under constraint

e>λ = 1. Therefore, by (9),
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λ̂ =

(
EΓ(ξ) + σ2I

)−1
e

e> (EΓ(ξ) + σ2I)−1 e
, λ̃ =

(
Γ(ξ0) + σ2I

)−1
e

e> (Γ(ξ0) + σ2I)−1 e
.

The function Q(λ) is strictly convex, so it has a unique minimum on the
convex set e>λ = 1. Therefore in (28) there is a strict inequality unless
λ̃ = λ̂.

5. Simulation results

Consider the domain D = [−th,+th] × [−th,+th] ⊂ R2 and a Gaussian
random field z0(x, y) on D with the linear mean value function:

z0(x, y) = β0 + β1x + β2y + δ(x, y),

where (x, y) ∈ D. The parameters β0, β1, β2 are unknown. (For simulation
we chose β0 = 1, β1 = 1, β2 = −1.) The field δ(x, y) is a zero mean Gaussian
random field with the Gaussian semivariogram described in Example 2. We
assume that the semivariogram is completely known. We used the following
values of the parameters: ω = π/2, a2 = 2. The error term ε(x, y) was a
Gaussian white noise with variance σ2 = 0.52. By simulation we generated
the field z0 on the h-lattice points of D and generated the field z at certain
random points described below.

We applied three kriging methods: universal kriging, naive kriging and
modified kriging (described in Section 3). The universal kriging was ap-
plied for data without error. For the universal kriging we used observations
of z0(x, y) at locations (x, y) = ((−t + 2k)h, (−t + 2l)h), k, l = 0, 1, . . . , t.
With the help of these observations we predicted the field z0(x, y) at the re-
maining h-lattice points (x, y) = (ih, jh) ∈ D. Naive kriging and modified
kriging were applied for data with error. For naive and modified kriging
we used the observations of the field z(x, y) at random points having inde-
pendent normal distributions around the previous locations with variance
matrix d2I. With the help of these observations we predicted the field
z0(x, y) at the same points as it was done by the universal kriging. In the
modified kriging we chose R = 2.

We chose t = 6, therefore we had n = 49 observations for kriging and
we made predictions at 120 points. We remark that at these 120 points the
true values of the field z0 were used to measure the precision of the kriging
procedures.



158 I. Fazekas and A.G. Kukush

The dispersion d of the location error and the step h were fixed on
different values to check the behaviour of different kriging methods. For
each fixed set of parameters we made 500 replications.

h = 0.5, d = 0.5
Universal kriging Naive kriging Modified kriging

aMSE 3.6 · 10−4 3.058 2.217
aVSE 9.2 · 10−7 16.092 7.163

h = 1, d = 1
Universal kriging Naive kriging Modified kriging

aMSE 3.4 · 10−3 3.364 1.756
aVSE 3.5 · 10−5 21.343 5.180

Now we describe the abbreviations in the tables below. After making kriging
at any fixed point s0, we calculated the squared error of kriging: SE =
(z0(s0) − ẑ0(s0))2. Here ẑ0(s0) is the predicted value of the field z0. Then
we calculated the mean and the variance of the squared errors at the 120
locations. These values are the mean squared error (MSE) and variance of
the squared error (V SE). Then we calculated the average of these quantities
over 500 replications. aMSE is the average of the mean squared errors,
aV SE is the average of the variances of the squared errors. aV SE measures
if the prediction fits uniformly well to the surface of our field.

The results show that by naive kriging and modified kriging we can not
expect the precision of universal kriging. (But universal kriging was used
for data without any observation error!) Modified kriging is better than
naive kriging and it is more stable. The simulations were performed with
MATLAB.
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