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Abstract

The first-order autoregressive model with uniform innovations
is considered. In this paper, we propose a family of BAYES
estimators based on a class of prior distributions. We obtain estimators
of the parameter which perform better than the maximum likelihood
estimator.
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1. Introduction

Let us consider the following autoregressive model

(1.1) Xt = ρXt−1 + εt, t = . . . ,−1, 0, 1, . . . ,

where 0 < ρ < 1 and the εt’s are i.i.d and distributed according
to uniform distribution U(0, 1). X1 is assumed to be distributed according
to U(0, 1/(1− ρ)) such that the process is mean stationary. The likelihood
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function based on the observations x = (x1, x2, . . . , xn) is then

p(x|ρ) = (1− ρ) IA(x),

where A = {x : 0 ≤ x1 ≤ 1/(1− ρ), 0 ≤ xt − ρxt−1 ≤ 1 , t = 2, . . . , n}.

Let ρ1 the maximum likelihood estimator of ρ introduced by Bell and
Smith (1986):

ρ1 = min (1, x2/x1, . . . , xn/xn−1) .

The problem of bayesian analysis of AR(1) models is studied by Turkmann
(1990) and Ibazizen and Fellag (2003) when the errors are exponential.

In this paper, we propose a Bayesian estimator of the parameter of
the model (1.1) using a family of prior distributions for the parameter ρ
proposed by Ibazizen and Fellag (2003). The estimators obtained with this
method under quadratic loss structure appear to be closer to the parameter
than the usual maximum likelihood estimator ρ1.

2. Bayesian estimation of the ar(1) parameter

Consider the following family of prior distributions for the parameter ρ

(2.1) p(ρ; β) ∝ ρβ−1

1− ρ
I(0,1)(ρ), β > 0 .

Suppose that our data consists of the segment of the observations x =
(x1, x2, . . . , xn). Then, the prior assessment on ρ is transformed via BAYES
theorem into

p(ρ|x) ∝ p(x|ρ) . p(ρ;β)

and then,
p(ρ|x) = C . ρβ−1I(ρ0,ρ1)(ρ)

with ρ1 given above,

ρ0 = max
(

0,
x1 − 1

x1
,
x2 − 1

x1
, . . . ,

xn − 1
xn−1

)
and C =

β

ρβ
1 − ρβ

0

.



Bayesian estimation of AR(1) models with ... 73

Under quadratic loss structure, the BAYES estimator of ρ is the posterior
mean and is given by the formula

ρ̂B(β) =
∫ ρ1

ρ0

ρ p(ρ|x)dρ .

This leads to

(2.2) ρ̂B(β) =
β

β + 1
ρβ+1
1 − ρβ+1

0

ρβ
1 − ρβ

0

, β > 0 .

The posterior variance is

σ2
B(β) = E

[
(ρ− ρ̂B(β))2| x]

=
β

β + 2
ρβ+2
1 − ρβ+2

0

ρβ
1 − ρβ

0

− ρ̂B(β)2 .

In order to illustrate our formulas, consider one segment of 20 observations
from the model (1.1) simulated with the true value ρ = 0.4 . We found

ρ0 = 0.3685 and ρ1 = 0.4193

Simulated values of the Bayesian estimator and the posterior variance (given
in parentheses) of ρ for different values of β are given in the following table

Table 1. Simulated values of the Bayesian estimator and posterior variance of ρ

for n=20 and ρ = 0.4

β 0.2 0.6 1.0 2.0 5.0

ρ̂B(β) 0.3934 0.3936 0.3939 0.3944 0.3960

|ρ̂B − ρ| 0.00653725 0.0063186 0.0061 0.00555404 0.00392878

σ2
B(β) 0.000215034 0.000215072 0.000215053 0.000214755 0.000211759

Since |ρ1 − ρ| = 0.0193, one can note that, for every β, the estimator ρ̂B(β)
is closer than ρ1 to the parameter ρ. Also, the value of ρ̂B tends to the true
value when β grows . The posterior variance is near zero for every β and
changes slightly when β increases.
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3. Simulation study

Consider the following exhaustive simulation study. We simulate samples
from the model (1.1) for β = 0.5, 1.0, 1.5, 2.0 and for n = 10, 20. The value
of ρ̂B(β) and its posterior variance are calculated. The computations are
based on 100000 replications of the process. The results are given in Table 2.

Table 2. Simulated values ρ̂B(β) and its variance for ρ=0.1,0.4,0.9, n=10,20
and β=0.5,1.0,1.5,2.0 . Variances are given in parentheses

n ρ ρ1 β = 0.5 β = 0.8 β = 1.0 β = 1.5 β = 2.0

0.1 0.1052 0.0988 0.1030 0.1134 0.1237 0.1315

(0.0060) (0.0018) (0.0185) (0.0019) (0.0022) (0.0026)

10 0.4 0.4211 0.3954 0.3960 0.3978 0.4000 0.4022

(0.0024) (0.0017) (0.0017) (0.0016) (0.0014) (0.0014)

0.9 0.9101 0.8999 0.8999 0.8999 0.9000 0.9000

(1.08 10−4) (0.5525 10−4)(0.5522 10−4)(0.5521 10−4)(0.5517 10−4)(0.5514 10−4)

0.1 0.1833 0.0981 0.1087 0.1127 0.1228 0.1305

(0.0051) (0.0017) (0.0017) (0.0016) (0.0019) (0.0022)

20 0.4 0.4540 0.3924 0.3938 0.3949 0.3972 0.3995

(0.0023) (0.0018) (0.0017) (0.0016) (0.0015) (0.0014)

0.9 0.9100 0.8992 0.8992 0.8992 0.8993 0.8993

(1.0434 10−4)(0.7808 10−4) (0.778 10−4) (0.7689.10−4)(0.7574 10−4)(0.7464 10−4)

We can remark that the Bayesian estimator ρ̂B(β) has smaller standard
deviation than the maximum likelihood estimator ρ1. In our exhaustive
simulation, we remark that, when n is not very small, the Bayesian estimator
ρ̂B(β) is better than the maximum likelihood estimator of ρ for every β.
Also, this is true if n is too small (e.g; n = 10) and ρ not near zero. However,
when ρ is near zero, ρ̂B(β) is the best only if 0 < β < 1. So our conclusion
can be as follows : if we choose a prior distribution given by the formula
(2.1) with 0 < β < 1, then the Bayesian estimator obtained under quadratic
loss structure performs better than the maximum likelihood estimator.
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