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Abstract

In this paper we introduce extensions of the so-called
Frisch–Waugh–Lovell Theorem. This is done by employing the close
relationship between the concept of linear sufficiency and the appro-
priate reduction of linear models. Some specific reduced models which
demonstrate alternatives to the Frisch–Waugh–Lovell procedure are
discussed.
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1. Introduction

Let Rm,n denote the set of m × n real matrices. The symbols A′, A+,
C(A), C(A)⊥ N (A), and r(A) will stand for the transpose, the Moore-
Penrose inverse, the column space, the orthogonal complement of the column
space, the null space, and the rank, respectively, of A ∈ Rm,n. By A⊥ we
denote any matrix satisfying C(A⊥) = N (A′) = C(A)⊥. Further, PA =
AA+ denotes the orthogonal projector (with respect to the standard inner
product) onto C(A), and MA = I−PA. In particular, we denote Pi = PXi ,
Mi = I−Pi, i = 1, 2. For matrices A and B with the same number of rows,
(A : B) denotes the partitioned matrix with A and B as submatrices.

Consider a general Gauss-Markov model denoted by

(1.1) M = {y,Xβ, σ2V}, E(y) = Xβ, cov(y) = σ2V,

where X is a known n×p matrix, β is a p×1 vector of unknown parameters,
V is a known n× n nonnegative definite matrix, and σ2 > 0 is an unknown
scalar. E(·) and cov(·) denote expectation and dispersion of a random vector
argument. It is assumed that the model is consistent, that is,

(1.2) y ∈ C(X : V),

see Rao (1971) and Feuerverger and Fraser (1980).
A vector of parametric functions Kβ, where K ∈ Rk,p, is estimable

under the model M if and only if C(K′) ⊆ C(X′). The best linear unbiased
estimator (BLUE) for an estimable vector of parametric functions Kβ is
given by Gy, where G ∈ Rk,n is any solution to the set of equations

(1.3) G(X : VX⊥) = (K : 0),

see, e.g., Rao (1973, p. 282).
By partitioning X = (X1 : X2) so that X1 has p1 columns and X2 has

p2 columns with p = p1 + p2, and by accordingly writing β = (β′1, β
′
2)
′, we

can express M in a partitioned form

(1.4) M = {y,X1β1+X2β2, σ
2V}.
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Regarding β1 as a nuisance parameter, our interest focuses on estimation
of a vector of estimable parametric functions K2β2 = Kβ = (K1 : K2)β,
where K1 = 0. As noted by Groß and Puntanen (2000, Lemma 1), K2β2 is
estimable under M if and only if C(K′

2) ⊆ C(X′
2M1), where M1 = I − P1

is the orthogonal projector onto N (X′
1). Hence, the BLUE for an arbitrary

estimable vector K2β2 may easily be computed from the BLUE of M1X2β2.
Let X have full rank and consider the model equation

(1.5) y = X1β1 + X2β2 + ε.

Premultiplying this equation by M1 yields the reduced model

(1.6) {M1y,M1X2β2, cov(M1ε)}.

The so-called Frisch–Waugh–Lovell Theorem states that the ordinary least
squares estimator (OLSE) of β2 under this reduced model equals the OLSE
of β2 under the original partitioned model. We may cite Davidson and
MacKinnon (1993, p. 19) who use the name Frisch–Waugh–Lovell Theorem,
after Frisch and Waugh (1933) and Lovell (1963): ‘. . . since those papers
seem to have introduced, and then reintroduced, it to econometricians.’

A generalized version of the Frisch–Waugh–Lovell Theorem to the case
of possibly singular V and possibly non-estimable β2 claims that every BLUE
of M1X2β2 under the reduced model (1.6) remains BLUE of M1X2β2 under
the partitioned model M, see, e.g., Groß and Puntanen (2000, Theorem 4)
and Bhimasankaram and Sengupta (1996, Theorem 6.1). In the following
section a more general reduction procedure is carried out.

2. Reduced models

Since we are not interested in the parameter vector β1, we may consider a
reduction of the model M by a transformation of y into Fy, where F is
any matrix such that FX1β1 = 0 for all β1 ∈ Rp1×1. Hence, we obtain the
reduced model

(2.1) Mr(F) = {Fy,FX2β2, σ
2FVF′} subject to FX1 = 0.
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We are interested in the following two questions: (1) For which transforma-
tion matrices F (where FX1 = 0) is every representation of the BLUE of
M1X2β2 in the reduced model Mr(F) also BLUE of M1X2β2 in the parti-
tioned model M? (2) Are there representations of the BLUE of M1X2β2 in
the partitioned model M which are also BLUE of M1X2β2 in the reduced
model Mr(F)?

Question (1) can be answered by employing the close relationship be-
tween the concept of linear sufficiency and the appropriate reduction of lin-
ear models. Recall that a linear transformation Fy (where not necessarily
FX1 = 0) is called linearly sufficient for an estimable vector of parametric
functions Kβ in model M if and only if there exists a matrix A such that
AFy is BLUE of Kβ. In that case, every representation of the BLUE of Kβ
in the induced model

M(F) = {Fy,FX1β1 + FX2β2, σ
2FVF′},

is also BLUE in the partitioned model M, cf. Baksalary and Kala (1986),
and Drygas (1983).

As mentioned in the introduction, the choice F = M1 is valid to sat-
isfy the required property that the BLUE of M1X2β2 in the reduced model
Mr(M1) is also BLUE in the partitioned model M. The model Mr(M1)
has been studied for example in Nurhonen and Puntanen (1992), Punta-
nen (1996, 1997), Bhimasankaram et al. (1996, 1997, 1998) and Groß and
Puntanen (2000). The obtained results can be seen as generalizations of
the Frisch–Waugh–Lovell Theorem to the case of possibly singular V and
possibly non-estimable β2.

As noted above, it is our intention here to demonstrate that further
choices for F are possible. An algebraic characterization of such matrices is
provided in the following theorem.

Theorem 1. Let F be any matrix satisfying the conditions

FX1 = 0,(2.2)

N (F) ∩ C(M1X2) = {0},(2.3)

C(FX2) ∩ C[FV(X1 : X2)⊥] = {0}.(2.4)
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Then the following four statements hold :

(i) M1X2β2 is estimable in the reduced model Mr(F);

(ii) Fy is linearly sufficient for M1X2β2 in the partitioned model M;

(iii) every representation of the BLUE of M1X2β2 in the reduced model
Mr(F) is also the BLUE of M1X2β2 in the partitioned model M;

(iv) there exists at least one representation of the BLUE of M1X2β2 in the
partitioned model M which is also BLUE of M1X2β2 in the reduced
model Mr(F).

Proof. By using the fact that

r(M1X2)− r(FM1X2) = dim[N (F) ∩ C(M1X2)],

see, e.g., Corollary 6.2 in Marsaglia and Styan (1974), it follows that (2.3)
is equivalent to C(X′

2M1) = C(X′
2M1F′). Since (2.2) may be expressed

as FM1 = F we obtain C(X′
2M1) ⊆ C(X′

2F
′), which is the condition for

estimability of M1X2β2 in Mr(F); thus statement (i) is proved. Moreover,
in view of (2.2), the condition C(X′

2M1) = C(X′
2M1F′) may equivalently be

written as

C(K′) = C(X′F′), K = (0 : M1X2), X = (X1 : X2).

Using condition (2.4) and C(K′) = C(X′F′), Corollary 1 in Baksalary and
Kala (1986) implies statement (ii). As a consequence, statement (iii) follows
immediately from Baksalary and Kala (1986, Theorem 1). For statement
(iv) we note that in view of (ii) there exists a matrix A such that AFy is
BLUE of M1X2β2 in model M. Hence,

(2.5) AF(X1 : X2) = (0 : M1X2), AFV(X1 : X2)⊥ = 0.
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From the former condition in (2.5) we have

(2.6) AFX2 = M1X2.

Moreover, the latter condition in (2.5) can be expressed as

(2.7) C[FV(X1 : X2)⊥] ⊆ N (A).

Since (2.2) may alternatively be expressed as C(F′) ⊆ N (X′
1), we obtain

C[F′(FX2)⊥]=C(F′) ∩N (X′
2) ⊆ N (X′

1) ∩N (X′
2)=C[(X1 : X2)⊥].

Hence, (2.7) implies

(2.8) C[FVF′(FX2)⊥] ⊆ N (A),

or, equivalently,

(2.9) AFVF′(FX2)⊥ = 0.

Conditions (2.6) and (2.9) show that AFy is BLUE for M1X2β2 under the
reduced model Mr(F), thus confirming statement (iv).

Note that a possible choice for the matrix (X1 : X2)⊥ in condition (2.4) is
given by

(2.10) (X1 : X2)⊥ = I−P(X1:X2) = M(X1:X2) = M1Z,

where, for convenience,

(2.11) Z = MM1X2 = I−M1X2(M1X2)+.
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3. Some specific reduced models

We have already emphasized the fact that the BLUE of M1X2β2 in the
reduced model Mr(M1) is also BLUE in the partitioned model M. Indeed,
it is clear that the conditions (2.2) and (2.3) from Theorem 1 are satisfied
for F = M1. Moreover, condition (2.4) with the choice (X1 : X2)⊥ = M1Z
becomes

(3.1) C(M1X2) ∩ C[M1VM1(I−PM1X2)] = {0}.

Condition (3.1) is a special case of the general relation

(3.2) C(B) ∩ C(AB⊥) = {0},

here A is symmetric nonnegative definite and B is arbitrary with the same
number of rows as A, see e.g., Rao (1974, Lemma 2.1). Hence Theorem 1
covers the Frisch–Waugh–Lovell Theorem.

As a more involved procedure one may, after orthogonally projecting
y onto C(X1)⊥, orthogonally project M1y onto C(V∗Z)⊥, where V∗ =
M1VM1 and Z = MM1X2 . It is easily seen that

(3.3) MV∗ZM1 = M1MV∗Z,

so that the matrix

(3.4) F = MV∗ZM1

is the orthogonal projector onto C(X1)⊥ ∩ C(V∗Z)⊥. The matrix F in (3.4)
satisfies the conditions of Theorem 1. In view of (3.3), clearly, FM1 = F,
which is equivalent to (2.2). Moreover, FVM1Z = FV∗Z = 0, showing that
(2.4) is satisfied. To see (2.3) let ` be any vector in N (F)∩C(M1X2). Then
M1MV∗Z` = 0, where ` = M1X2u for some vector u. Combining these
identities yields

M1MV∗ZM1X2u = 0,

which is equivalent to MV∗ZM1X2u = 0, i.e.,

M1X2u ∈ C(V∗Z).
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But since in view of (3.2), C(M1X2) ∩ C(V∗Z) = {0}, it follows M1X2u =
` = 0, showing N (F) ∩ C(M1X2) = {0}. Hence (2.3) is satisfied.

Let us now turn our attention to a different procedure. Consider the
linear model

(3.5) M1 = {y,X1β1, σ
2V},

which is a ‘reduction’ of the partitioned linear model M by ignoring X2β2.
If we assume model M1 to be consistent, then y ∈ C(X1 : V). If in addition
we wish to avoid any conflict with the original model M, then we have to
assume C(X1 : V) = C(X1 : X2 : V), or, equivalently,

(3.6) C(X2) ⊆ C(X1 : V).

One representation of the BLUE of X1β1 in model M1 is given by

(3.7) X1(X′
1T

+
1 X1)+X′

1T
+
1 y, T1 = V + X1X′

1.

If y ∈ C(X1 : V), then the ‘raw’ residual of an arbitrary representation of
the BLUE of X1β1 in model M1 can be written as

(3.8) [I−X1(X′
1T

+
1 X1)+X′

1T
+
1 ]y = VM1(M1VM1)+M1y.

As we will demonstrate below, the choice

(3.9) F = VM1(M1VM1)+M1

satisfies the conditions of Theorem 1 when (3.6) is satisfied. Note that
the choice of F in (3.9) and the corresponding reduced model Mr(F) have
also been discussed by Bhimasankaram, Shah and Saha Ray (1998) without
explicitly mentioning properties (i) to (iv) of Theorem 1. It is clear that for
V∗ = M1VM1 we have V+∗ = M1V+∗ = V+∗ M1 = M1V+∗ M1, so that F
from (3.9) is equal to F = VV+∗ .
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Now, let F be the matrix from (3.9). Then clearly FX1 = 0, which is condi-
tion (2.2) in Theorem 1. SinceN (F) is easily seen to coincide withN (VM1),
and since in view of (3.6) we have C(M1X2) ⊆ C(M1V) = N (VM1)⊥, it
follows that N (F) ∩ C(M1X2) = {0}, which is condition (2.3) in Theorem
1. It remains to show that (2.4) from Theorem 1 is satisfied. For this, let
` be a vector in C(FX2) ∩ C(FVM1Z). Since FVM1 = VM1, there exist
vectors u and v such that

(3.10) ` = VM1(V∗)+M1X2u = VM1Zv.

Premultiplying (3.10) by M1 and using C(M1X2) ⊆ C(V∗) yields

(3.11) M1` = M1X2u = V∗Zv.

In view of (3.2), it follows that (3.11) can hold only if M1` = 0. The latter
means that ` = X1w for some vector w. Hence,

(3.12) ` = X1w = VM1z, z = MM1X2v.

Now (3.2) implies that (3.12) can hold only if ` = 0. This confirms condition
(2.4) in Theorem 1.

As a slightly different alternative to the matrix F from (3.9) one may
choose

(3.13) G = V1/2M1(M1VM1)+M1 = V1/2V+
∗ ,

where V1/2 denotes the uniquely determined symmetric nonnegative definite
square root of V. It is of some interest to observe that GVG′ = PV1/2M1

and

(3.14) GVG′GX2 = PV1/2M1
GX2 = GX2,

which means that under the model {Gy,GX2β2, σ
2GVG′} we have the

equality between OLSE(GX2β2) and BLUE(GX2β2); cf. Puntanen and
Styan (1989).
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