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Bożena Janiszewska and Roman Różański
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Abstract
In the article, we propose a new estimator of the hazard rate func-

tion in the framework of the multiplicative point process intensity
model. The technique combines the reflection method and the method
of transformation. The new method eliminates the boundary effect
for suitably selected transformations reducing the bias at the bound-
ary and keeping the asymptotics of the variance. The transformation
depends on a pre-estimate of the logarithmic derivative of the hazard
function at the boundary.
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1. Introduction

An investigation into the intensity of the occurrence of phenomena observed
as some processes is the most common subject of interest in the theory of
point processes. In the most simple cases, which occur in the reliability the-
ory or survival analysis, the object observed can take only one of two states,
defined as ”working” and ”broken” (alive, dead). The transition between
these states can be thought of as an event of some point process.
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In such cases the intensity of the events ”death” is given by the hazard
function for the distribution of the survival time. Let us note that the model
described above is a special case of the so called multiplicative intensity
model [1] which has played a key role in the theory of point processes.
The model assumes that the intensity of a given point process Nn(t) is the
product of a deterministic function α(t) and an observable factor Yn(t):

λ(t) = α(t)Yn(t).

The deterministic part of this model (for a two state model), α(t) is inter-
preted as the hazard function, whereas Yn(t) denotes the total number of
objects among n, which are at risk at time t. When a collection of indi-
viduals is observed it is often impossible to wait for the event to happen
for all the objects observed - it is only known that the event had not yet
happened at some specified time and in this case the observation of the time
to the occurrence of the event is censored. A well known estimator of the
function α in this multiplicative model is the Ramlau-Hansen (R-H) esti-
mator [4]. However, this estimator gives poor estimates at the end points
of the domain of the hazard function. This phenomenon is analogous to the
boundary effect observed when estimating a density function.

One of the methods proposed in order to eliminate this undesirable
effect, occurring in both the estimation of a density function, as well as of
a hazard rate function, is the method of transformation, see, e.g., [5], [6],
[9], [10], [3]. The transformed estimator of the hazard function (the kernel-
diffeomorphic estimator) proposed in [3] leads to a bias of order O(h2),
whereas for the R-H estimator it is of order O(h), where h is the bandwidth
parameter. This result is true for any diffeomorphic transformation ϕ. The
problem of estimation of the hazard rate function with a uniform accuracy
in the whole domain seems to be important due to possible applications in
biostatistic, demographic, epidemiologic and survival analysis.

In this article, we construct a new estimator of the hazard rate func-
tion, which combines the reflection method (used in the estimation of the
density function [7]) and the method of transformation. Under the following
conditions on a monotonically increasing transformation ϕ

• ϕ(0) = 0

• ϕ(1)(0) = 1
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we obtain estimates for the bias and asymptotic variance of order O(h2)
and O( 1

nh) respectively. The choice of the transformation ϕ is an important
element of the new estimator. Since the conditions on the transformation ϕ
depend on the unknown function α we have presented a method of estimating
such a transformation function ϕ. Due to the proposed method of estimation
of the transformation function ϕ, it is important for the hazard function we
estimate to satisfy the condition α > 0.

The plan of the paper is as follows. Section 2 contains preliminary re-
sults concerned with the multiplicative point process model. In Section 3,
we introduce a new estimator of the hazard rate function. Moreover, we
describe conditions on the transformation and present a method for its esti-
mation. We also formulate a lemma where the formula defining the bias and
variance of the introduced estimator is given. Furthermore, we formulate
theorems on asymptotic properties of the estimator. Section 4 is devoted to
the presentation of some simulation results involving the estimator consid-
ered. Section 5 contains proofs of all theorems and statements from previous
sections.

2. The description of the model

In this section, we describe the multiplicative intensity point process model
introduced by Aalen (1978). Let (Ω, P,F) be a probability space on which a
sequence of point processes {Nn(t), n ∈ N} is defined. We assume that the
processes are adapted to their filtrations {Ft,n; n ∈ N, t ≥ 0}. We consider
such models for which a stochastic intensity λ(t) of the process Nn(t) exists
and can be defined in the following way

λ(t) = lim
h→0

1
h

P{N(t + h)−N(t) ≥ 1 | Ft−} .

The point process Nn(t), belongs to the class of multiplicative intensity
model if the intensity function λ(t) has the following form

λ(t) = α(t)Yn(t) ,

where Yn(t) is an observable nonnegative process, left continuous with right-
hand limits (or more generally predictable), and α(t) is the unknown non-
negative deterministic function to be estimated.

An important example of application of the multiplicative intensity
point process model is the operation-failure model under censoring.
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Suppose, we observe the course of n life insurance policies. Let Ti be the ran-
dom variable representing the i-th person insured, where the deterministic
function in the multiplicative model is interpreted as a hazard rate function
of the form

P (Ti ∈ [t, t + dt) | Ti ≥ t) = αi(t)dt .

Obviously, in practice we do not have access to the complete set of observa-
tions regarding the lifetime of the people insured. Data censoring appears
in many cases, i.e., loss of contact with the client before death. We define
the point process of such a model to be

N (i)(t) = 1{T̃i ≤ t,Di = 1} , i = 1, 2, . . . , n ,

where

T̃i − is either the time of death or censoring,

Di − is the indicator of time of death being observed Di = 1{T̃i = Ti}

and

Fi,t = {T̃i < s, s ≤ t,Di}.
Further, we have

P
(
dN (i)(t) = 1 | Ft−

)
= αi(t)Y (i)(t)dt

with

Y (i)(t) = 1{T̃i ≥ t} .

Assuming the independence of the risk of a failure (death) and censoring
process, (see Anderson, Gill [2]) and that the subjects observed represent
a homogeneous population, we can define a sequence of one-dimensional
point processes Nn(t) whose value at time t represents the number of failures
(deaths) in the interval [0, t]. The intensity of the process is given by λn(t) =
α(t)Yn(t), where Yn(t) represents the number of elements still functioning
and being under observation up to time t. We can write

dNn(t) = α(t)Yn(t)dt + dMn(t),
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where Mn(t) is a martingale with respect to the filtration {Fn,t} = σ(Fi,t; i =
1, 2, . . . , n). To estimate the hazard function α(t), t ∈ [0, T ], one can use the
following estimator

(2.1) α̂n(x) =
1
h

∫ T

0
K

(
x− s

h

)
Jn(s)
Yn(s)

dNn(s),

where Jn(s) = 1{Yn(s) > 0} and Jn(s)/Yn(s) = 0, when Yn(s) = 0.

In addition:

K − the kernel function, with support [-1,1],
∫ 1

−1
K(u)du = 1,(2.2)

h − bandwidth (a positive parameter), h → 0 as n →∞.(2.3)

The form of this estimator was derived by Ramlau-Hansen (see [4]). It is an
asymptotically unbiased, consistent and asymptotically normal estimator
of the hazard rate function (see [4]). However, the results of simulations
carried out using this estimator are unsatisfactory at the end points of the
time interval on which the process Nn(t) is observed. To correct this so
called boundary effect a kernel-diffeomorphic estimator has been defined in
[3] which gives improved results at the boundary. It is of the following form

(2.4)

α̂n,ϕ(x) =

=
1
h

∫ b

a
K

(
ϕ(x)− s

h

)
ϕ(1)(ϕ−1(s))
Yn(ϕ−1(s))

Jn(ϕ−1(s))dNn(ϕ−1(s)),

where ϕ is a diffeomorphism from (0, c) on (a, b), and a, b, c are allowed to
be infinite. The estimator has been proved to be asymptotically unbiased
and asymptotically normal. Moreover, for any diffeomorphic transformation
ϕ the order of bias is O(h2) for all x ∈ [0, T ] and also for x = ch, 1 ≥ c ≥ 0.
Despite of satisfactory properties of the bias, this estimator has a somewhat
larger variance than that of Ramlau-Hansen.



10 B. Janiszewska and R. Różański

3. Estimation of the hazard function with

transformation and reflection of data.

Properties of the estimator

Let Ti be the points of discontinuity of the point process Nn, which is ob-
served on the interval [0,∞). Moreover, let ϕ : [0,∞) → [0,∞) be a non-
negative, continuous, and monotonically increasing function. We transform
the points of discontinuity of the process, Ti, to ϕ(Ti), and then reflect
them around the point t = 0. Hence, we obtain −ϕ(Ti). Using these new
pseudo-data we can write

α̂ref (x) =
1
h

∑

Ti

K

(
x− (−ϕ(Ti))

h

)
1

Yn(Ti)

=
1
h

∫ ∞

0
K

(
x + ϕ(s)

h

)
1

Yn(s)
dNn(s).(3.5)

Combining the formula for the R-H (2.1) estimator and making use of the
pseudo-data (3.5) we can define a new estimator of the hazard rate function
as follows.

Definition 3.1 . The reflected after transforming estimator α̃n of the hazard
rate function α is defined by the following formula

(3.6) α̃n(x) =
1
h

∫ ∞

0

[
K

(
x− s

h

)
+ K

(
x + ϕ(s)

h

)]
Jn(s)
Yn(s)

dNn(s),

where Jn(s) = 1{Yn(s) > 0}. If Yn(s) = 0 we define Jn(s)/Yn(s) = 0. The
kernel K and parameter h satisfy conditions (2.2), (2.3), respectively.
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It can be easily shown that the form of this estimator reduces to the R-H
estimator for x > h. This fact follows from the boundedness of the support
of the kernel K. For x > h the above estimator has properties analogous to
those of the R-H estimator. Thus, the bias is of order O(h2). In order to
describe the behaviour of the new estimator at the boundary we need the
explicit form of the bias expression of the estimator (3.6).

Throughout the paper, we assume that

(3.7) lim
n→∞ sup

s∈[0,T ]
E

∣∣∣∣
nJn(s)
Yn(s)

− 1
y(s)

∣∣∣∣ = 0

and

(3.8) lim
n→∞ sup

s∈[0,T ]
E |Jn(s)− 1| = lim

n→∞ sup
s∈[0,T ]

P (Yn(s) = 0) = o

(
1
n

)
,

where y(s) is a positive and continuous function and T is any positive
number.

Remark 3.1 .The assumption 3.8 holds in a model of observing n objects
in the presence of right censoring, see [2] for details.

3.1. Reduction of the bias
The transformation ϕ plays an important role in the definition of the esti-
mator (3.6). The choice of the function determines the form and the order
of the bias.

Lemma 3.1 . Assume that α(2)(·), ϕ(3)(·) exist and they are continuous.
Furthermore, assume that ϕ−1(0) = 0, and ϕ(1)(0) = 1, where ϕ−1 is the
inverse function of ϕ, and α(i) and ϕ(i) are the ith derivatives of α and ϕ,
i ≥ 0 (α(0) = α, ϕ(0) = ϕ). Moreover, assume that condition (3.8) holds.
Then for x = ch, 0 ≤ c ≤ 1, we have
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Eα̃n(x)− α(x) = h
(
2α(1)(0)− ϕ(2)(0)α(0)

)∫ 1

c
K(t)(t− c)dt

+
h2

2
α(2)(0)

∫ 1

−1
K(t)t2dt

− h2

2

[
ϕ(3)(0)α(0) + 3ϕ(2)(0)

(
α(1)(0)− ϕ(2)(0)α(0)

)]

×
∫ 1

c
K(t)(t− c)2dt + o(h2).(3.9)

The proof of the lemma is given in Section 5. The primary goal of our
transformation ϕ is to eliminate the first-order term in the bias expression
(3.9). Assume that α(0) > 0, then it suffices that

(3.10) ϕ(2)(0) =
2α(1)(0)

α(0)
,

to eliminate the first order term. Consequently, let us choose a transforma-
tion ϕ satisfying the following conditions:

(1) ϕ(0) = 0

(2) ϕ(1)(0) = 1

(3) ϕ(2)(0) = 2α(1)(0)
α(0)

(4) ϕ is monotonically increasing.

It is easy to find such transformations fulfilling the conditions above. For
instance, let us choose the transformation ϕ of the form:

(3.11) ϕ(x) = x + Dx2 + AD2x3,
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where

(3.12) D =
α(1)(0)
α(0)

,

and 3A > 1. This function obviously satisfies conditions (1)–(5), and the
bias (3.9) takes the following form:

Eα̃n(x)− α(x) =
h2

2
α(2)(0)

∫ 1

−1
K(t)t2dt

− h2

2
6D(A− 1)α(1)(0)

∫ 1

c
K(t)(t− c)2dt + o(h2).

3.2. Asymptotic distribution of the estimator α̃n

To study the statistical properties of α̃n, it is convenient to introduce the
quantities

(3.13) α̃∗n(x) =
1
h

∫ ∞

0

[
K

(
x− s

h

)
+ K

(
x + ϕ(s)

h

)]
Jn(s)α(s)ds,

(3.14) α0(x) =
1
h

∫ ∞

0

[
K

(
x− s

h

)
+ K

(
x + ϕ(s)

h

)]
α(s)ds.

The following theorem gives the form of the asymptotic distribution of α̃n.

Theorem 3.1 . Assume that ϕ and h satisfy conditions (1)–(4), (2.3) re-
spectively, and nh → ∞ when n → ∞. Further, assume that the function
α is twice continuously differentiable and conditions (3.7), (3.8) hold. Then
for x = ch, 0 ≤ c ≤ 1 we have

√
nh (α̃n(x)− α̃∗n(x)) D−→ N(0, V ) as n →∞,(3.15)
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where V is of the form

(3.16) V =
α(0)
y(0)

∫ 1

−1
K2(t)dt + 2

α(0)
y(0)

∫ c

−1
K(t)K(2c− t)dt.

In addition to the theorem one may be interested in extra conditions which
ensure that

√
nh(α0(x) − α(x)) is asymptotically negligible. Applying the

mean value theorem, this occurs if nh5 → 0 as n → ∞. Moreover, we can
write

Theorem 3.2 . Assume that ϕ and h satisfy conditions (1)–(4), (2.3) re-
spectively, and nh → ∞, nh5 → 0 when n → ∞. Further, assume that the
function α is twice continuously differentiable and conditions (3.7), (3.8)
hold. Then for x = ch, 0 ≤ c ≤ 1 we have

(3.17)
√

nh (α̃n(x)− Eα̃n(x)) D−→ N(0, V ) as n →∞

and

(3.18)
√

nh (α̃n(x)− α(x)) D−→ N(0, V ) as n →∞,

where V is of the form 3.16.

The above theorems give us some description of the asymptotic variance of
the estimator α̃n which is to be of the rate V

nh .

Remark 3.2 .Let us observe that for x > h, the estimator α̃(x) has the
same asymptotic normal distribution as the Ramlau-Hansen estimator.

3.3. Estimation of the transformation ϕ

The transformation ϕ given by (3.11) is difficult to use in practice, because
D defined by (3.12) is unknown (it depends on the unknown function α).
Taking into account that

(3.19) D = (d/dx) log α(x)|x=0



Estimation of the hazard rate function with ... 15

one can estimate D by

(3.20) Dn =
log αn(h)− log αn(0)

h
,

where h → 0 as n →∞, and

(3.21) αn(h) = α̂n(h) +
1
n2

,

where α̂n(h) is defined by (2.1), and

(3.22) αn(0) = max

(
α̂n(0),

1
n2

)

with

(3.23) α̂n(0) =
1
h

∫ ∞

0
K(0)

(−s

h

)
Jn(s)
Yn(s)

dNn,

for K(0) satisfying

∫ 0

−1
K(0)(t)dt = 1,

∫ 0

−1
tK(0)(t)dt = 0

and

∫ 0

−1
t2K(0)(t)dt 6= 0.

The factor 1
n2 in 3.21 and 3.22 is used to keep αn(h) and αn(0) bounded

away from 0. Assuming that h = O(n−1/5) we obtain the rate of convergence
of α̂n to α and Dn to D for x = 0, h. Namely, we have

Lemma 3.2 . Let αn(h) and αn(0) be defined by (3.21) and (3.22), respec-
tively. Suppose that α(2)(·) is continuous near 0. Then



16 B. Janiszewska and R. Różański

(3.24) |αn(x)− α(x)| P∼= O(h2)

and

(3.25) E (αn(x)− α(x))2 ∼= O(h4)

for x = 0, h.

Lemma 3.3 . Let Dn be defined by (3.20). Assume that α(x) > 0 for x =
0, h and that α(2)(·) is continuous near x = 0. Then

(3.26) |Dn −D| P∼= O(h)

and

(3.27) E (Dn −D)2 ∼= O(h2).

Thus we define

(3.28) ϕn(x) = x + Dnx2 + AD2
nx3

as our estimator of ϕ(x).

3.4. The proposed estimator
Based on the estimator ϕn defined in (3.28), we propose a new estimator of
the form presented in (3.6). It is defined as follows

(3.29) α̂new(x) =
1
h

∫ ∞

0

[
K

(
x− s

h

)
+ K

(
x + ϕn(s)

h

)]
Jn(s)
Yn(s)

dNn(s).

Since the estimator has the same form as the estimator (3.6), it can be shown
that for x > h it reduces to the R-H (2.1) estimator. Thus (3.29) is a natural
extension of the R-H estimator. The properties of the bias and asymptotic
distribution of the estimator (3.29) are given in the following theorems.

Theorem 3.3 . Assume that α(x) > 0 for x = 0, h, and α(2)(x) is contin-
uous in a neighbourhood of 0. Moreover, assume that conditions (3.7) and
(3.8) hold. Then for x = ch, 0 ≤ c ≤ 1, we have
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(3.30) Eα̂new(x)− α(x) = Eα̃n(x)− α(x) + O(h2),

where α̂new and α̃n are given by (3.29) and (3.6), respectively.

Let α̂∗new be defined as follows

α̂∗new(x) =
1
h

∫ ∞

0

[
K

(
x− s

h

)
+ K

(
x + ϕn(s)

h

)]
α(s)Jn(s)ds

and α0 be defined by 3.14. We now turn to a study of the asymptotic
distribution of the proposed estimator α̂new.

Theorem 3.4 . Assume that ϕ and h satisfy conditions (1)–(4) and 2.3
respectively, and nh5 → 0 when n →∞. Further, assume that the function
α is twice continuously differentiable and conditions 3.7, 3.8 hold. Then for
x = ch, 0 ≤ c ≤ 1 we have

√
nh (α̂new(x)− α̂∗new(x)) D−→ N(0, V ) as n →∞,(3.31)

(3.32)
√

nh
(
α̂new(x)− α0(x)

) D−→ N(0, V ) as n →∞.

Moreover

(3.33)
√

nh (α̂new(x)− α(x)) D−→ N(0, V ) as n →∞

and

(3.34)
√

nh (α̂new(x)− Eα̂new(x)) D−→ N(0, V ) as n →∞,

where V is of the form 3.16.

Proofs of these theorems are given in Section 5.
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4. Simulation results

We assume that failure times T1, . . . , Tn, where n = 1000 are observed on
the interval (0,∞) and data are generated from

(i) the exponential distribution with λ=5, here the hazard rate is fixed
α(x)=5,

(ii) the Gompertz distribution with the hazard function of the form α(x) =
θ exp(γx), where θ = 1 and γ = 1.

In simulations, we used the following kernels

K(x) =
3
4
(1− x2)1{[−1, 1]}

and

K0(x) = 12(1 + t)
(

t +
1
2

)
1{[−1, 0]}.

The value of A used in the simulations was 0.55, which gave relatively
good results. In all cases, we set h = 0, 24, which is of order n−1/5. We
have to keep in mind that the estmator α̂nev differs from the R-H estimator
at points x = ch, where c ∈ (0, 1); whereas for points x > h these esimators
are equal. We estimate the hazard rate function on the interval (0, 1) and we
do not have complete observations of the lifetime. We assume that T1, . . . , Tn

are censored by n independent censoring time U1, . . . , Un generated from the
exponential distribution with the mean λ. The parameter λ = 3 was chosen
for the life time Ti from the exponential distribution and λ = 1.5 for the
life time Ti from the Gompertz distribution. We define T̃i = min(Ti, Ui)
and the indicator of censoring Di = 1{T̃i = Ti}. In this case, the point
process N is of the form Nn(t) =

∑n
i=1 1{T̃i < t}. This process counts the

total number of failures in the interval (0, t), and the intensity function is
given by λ(t) = α(t)Yn(t), where Yn =

∑n
i=1 1{T̃ ≥ t}. The process Yn(t)

counts the number of elements at risk of failure just to time t. Figures 1
and 2 present realizations of the estimators α̂new and α̂n obtained from the
censored data. We observe a significantly better behavior of the estimator
α̂new at the boundary (in the neighborhood of zero). We draw analogous
conclusions from Figure 3 where the bias of both estimators is presented.
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Figure 1. Data from exponential distribution:

(a) The estimator α̂new (solid
line) and true hazard rate
function (dashed line).

(b) The Ramlau-Hansen estimator
(solid line) and true hazard rate
function (dashed line).

                                        

                                        

                                        

                                        

                                        

                                        

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

(a)

                                        

                                        

                                        

                                        

                                        

                                        

0.00 0.08 0.16 0.24

0.96

1.04

1.12

1.20

1.28

ha
za

rd
 r

at
e 

fu
nc

tio
n

                                        

                                        

                                        

                                        

                                        

                                        

0.0 0.2 0.4 0.6 0.8 1.0

0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

(b)

                                        

                                        

                                        

                                        

                                        

                                        

0.00 0.08 0.16 0.24

0.6

0.8

1.0

1.2

ha
za

rd
 r

at
e 

fu
nc

tio
n

Figure 2. Data from Gompertz distribution

(a) The estimator α̂new (solid
line) and true hazard rate
function (dashed line).

(b) The Ramlau-Hansen estimator
(solid line) and true hazard rate
function (dashed line).
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Figure 3. The bias of the estimator α̂new (solid line) and

the Ramlau-Hansen estimator (dashed line):

(a) data from exponential
distribution

(b) data from Gompertz distribution.

5. Proofs

Proof of Lemma 3.1.
We assume that x = ch, 0 ≤ c ≤ 1 and the kernel function K has a bounded
support (i.e., [-1,1])

Eα̃n(x) = E

[
1
h

∫ ∞

0

[
K

(
x− s

h

)
+ K

(
x + ϕ(s)

h

)]
Jn(s)
Yn(s)

dNn(s)
]

=
1
h

∫ ∞

0

[
K

(
x− s

h

)
+ K

(
x + ϕ(s)

h

)]
α(s)EJn(s)ds

∼= 1
h

∫ ∞

0
K

(
x− s

h

)
α(s)ds +

1
h

∫ ∞

0
K

(
x + ϕ(s)

h

)
α(s)ds

= I1 + I2,
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where

I1 =
1
h

∫ x+h

0
K

(
x− s

h

)
α(s)ds =

∫ x/h

−1
K(t)α(x− ht)

=
∫ c

−1
K(t)

[
α(x)− α(1)(x)ht + α(2)(x)

h2t2

2
+ o(h2)

]
dt(5.1)

and

I2 =
1
h

∫ ϕ−1(h−x)

0
K

(
x + ϕ(s)

h

)
α(s)ds

=
∫ 1

x/h
K(t)

α(ϕ−1(ht− x))
ϕ(1)(ϕ−1(ht− x))

dt=
∫ 1

c
K(t)

α(ϕ−1(h(t− c)))
ϕ(1)(ϕ−1(h(t− c)))

dt

=
∫ 1

c
K(t)

[
α(ϕ−1(0))

ϕ(1)(ϕ−1(0))
+ (t− c)h

(
α(ϕ−1(·))

ϕ(1)(ϕ−1(·))

)′

(·)=0

+
(t− c)2h2

2

(
α(ϕ−1(·))

ϕ(1)(ϕ−1(·))

)′′

(·)=0

]
dt + o(h2)

=
∫ 1

c
K(t)

[
α(0) + (t− c)h

(
α(1)(0)− ϕ(2)(0)α(0)

)
+

(t− c)2h2

2
(5.2)

×
(
α(2)(0)− ϕ(3)(0)α(0)− 3ϕ(2)(0)

[
α(1)(0)− ϕ(2)(0)α(0)

])]

× dt + o(h2).

Summing (5.1) and (5.2) we obtain
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Eα̃n(x) = α(x)
∫ c

−1
K(t)dt−α(1)(x)h

∫ c

−1
K(t)tdt+α(2)(x)

h2

2

∫ c

−1
K(t)t2dt

+ α(0)
∫ 1

c
K(t)dt +

(
α(1)(0)− ϕ(2)(0)α(0)

)
h

∫ 1

c
K(t)(t− c)dt

+
[
α(2)(0)− ϕ(3)(0)α(0)− 3ϕ(2)(0)

(
α(1)(0)− ϕ(2)(0)α(0)

)]

× h2

2

∫ 1

c
K(t)(t− c)2dt + o(h2).(5.3)

By the assumed continuity of α(2)(·) near 0, we have that for x = ch

(a) α(0) = α(x)− α(1)(x)ch + 1
2α(2)(x)c2h2 + o(h2),

(b) α(1)(x) = α(1)(0) + chα(2)(0) + o(h),

(c) α(2)(x) = α(2)(0) + o(1).

Substituting (a)–(c) into (5.3), we obtain

Eα̃n(x) = α(x) + h
(
2α(1)(0)− ϕ(2)(0)α(0)

)∫ 1

c
K(t)(t− c)dt

+
h2

2
α(2)(0)

∫ 1

−1
K(t)t2dt− h2

2

×
(
ϕ(3)(0)α(0) + 3ϕ(2)(0)

[
α(1)(0)− ϕ(2)(0)α(0)

])

×
∫ 1

c
K(t)(t− c)2dt + o(h2)
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which completes the proof of Lemma 3.1.

Proof of Theorem 3.1.

√
nh (α̃n(x)− α̃∗n(x)) =

=
√

nh

(
1
h

∫ ∞

0

[
K

(
x− s

h

)
+ K

(
x + ϕ(s)

h

)]
Jn(s)
Yn(s)

dNn(s)

− 1
h

∫ ∞

0

[
K

(
x− s

h

)
+ K

(
x + ϕ(s)

h

)]
Jn(s)α(s)ds

)

=
√

n

h

∫ ∞

0

[
K

(
x− s

h

)
+ K

(
x + ϕ(s)

h

)]
Jn(s)
Yn(s)

dMn(s)ds.

Let us consider a sequence of predictable processes

Hn(s) =
√

n

h

[
K

(
x− s

h

)
+ K

(
x + ϕ(s)

h

)]
Jn(s)
Yn(s)

with a fixed x and h at the moment, and let {M̃n} be a sequence of martin-
gales as follows

M̃n(z) =
∫ z

0
Hn(s)dMn(s) z ∈ (0,∞).

We show that

〈M̃n(z)〉 P−→ V (z),

where V is a non-decreasing and a non-negative function and 〈·〉 denotes the
quadratic variation.
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〈M̃n(z)〉 =
∫ z

0
H2

n(s)d〈Mn(s)〉

=
n

h

∫ z

0

[
K

(
x− s

h

)
+ K

(
x + ϕ(s)

h

)]2 Jn(s)
Yn(s)

α(s)ds

P∼= 1
h

∫ z

0

[
K2

(
x− s

h

)
+ K2

(
x + ϕ(s)

h

)]
α(s)
y(s)

ds

+
2
h

∫ z

0
K

(
x− s

h

)
K

(
x + ϕ(s)

h

)
α(s)
y(s)

ds

= I11 + I22.

Observe that

I11 =
1
h

∫ min(x+h,z)

0
K2

(
x− s

h

)
α(s)
y(s)

ds

+
1
h

∫ min(ϕ−1(h−x),z)

0
K2

(
x + ϕ(s)

h

)
α(s)
y(s)

ds

=
∫ c

max(−1,c− z
h
)
K2(t)

α(h(c− t))
y(h(c− t))

dt

+
∫ min

“
1,c+

ϕ(z)
h

”

c
K2(t)

α(ϕ−1(h(t− c)))
y(ϕ−1(h(t− c)))

1
ϕ(1)(ϕ−1(h(t− c)))

dt

∼=
∫ min

“
1,c+

ϕ(z)
h

”

max(−1,c− z
h
)

K2(t)
α(0) + o(1)

y(0)
dt(5.4)

and
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I22 =
2
h

∫ min(x+h,z)

0
K

(
x− s

h

)
K

(
x + ϕ(s)

h

)
α(s)
y(s)

ds

= 2
∫ c

max(−1,c− z
h
)
K(t)K

(
x + ϕ(h(c− t))

h

)
α(h(c− t))
y(h(c− t))

dt

= 2
∫ c

max(−1,c− z
h
)
K(t)K

(
x + ϕ(0) + ϕ(1)(0)h(c− t) + o(h2)

h

)

× α(0) + o(1)
y(h(c− t))

dt ∼= 2
∫ c

max(−1,c− z
h
)
K(t)K(2c− t + o(h))

× α(0) + o(1)
y(0)

dt,(5.5)

where we make use of facts

(a) α(ϕ−1(h(t−c)))

ϕ(1)(ϕ−1(h(t−c)))
= α(0)

ϕ(1)(0)
+ [α(1)(0)− ϕ(2)(0)α(0)]h(t− c) + o(h) =

α(0)

ϕ(1)(0)
+ o(1),

(b) α(h(c− t)) = α(0) + o(1)

and conditions (1)–(4). Thus we get

〈M̃n(z)〉 P∼=
∫ min

“
1,c+

ϕ(z)
h

”

max(−1,c− z
h
)

K2(t)
α(0) + o(1)

y(0)
dt

+ 2
∫ c

max(−1,c− z
h
)
K(t)K(2c− t + o(h))

α(0) + o(1)
y(0)

.
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Further, let M̃n,ε be of the form

M̃n,ε(z) =
∫ z

0
Hn(s)1{|Hn(s)| > ε}dMn(s).

Then

〈M̃n,ε(z)〉 =

=
∫ z

0
H2

n(s)1{|Hn(s)| > ε}d〈Mn(s)〉

=
n

h

∫ z

0

[
K

(
x− s

h

)
+ K

(
x + ϕ(s)

h

)]2 Jn(s)
Yn(s)

α(s)1{|Hn(s)| > ε}ds

P∼= 1
h

∫ min(x+h,z)

0

[
K

(
x− s

h

)
+ K

(
x + ϕ(s)

h

)]2 α(s)
y(s)

1{|Hn(s)| > ε}ds

=
∫ c

max(−1,c− z
h
)

[
K(t) + K

(
ch + ϕ(h(c− t))

h

)]2

× α(h(c− t))
y(h(c− t))

1{|Hn(x− th)| > ε}dt
P−→ 0

because

1{|Hn(x− ht)| > ε} =

= 1
{∣∣∣∣n

[
K(t) + K

(
x + ϕ(x− ht)

h

)]
Jn(x− ht)
Yn(x− ht)

∣∣∣∣ > ε
√

nh

}

P∼= 1





K(t)
y(0)

> ε
√

nh−
K

(
c + ϕ(h(c−t))

h

)

y(0)



 −→ 0
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uniformly in probability. Finally, all the assumptions of Rebolledo’s theorem
[2] are satisfied and thus

M̃n(z) D−→ G(z),

where G is a Gaussian martingale with variance V . Taking into account
that the kernel has a support in [−1, 1] and h = O(n−1/5) we obtain that

〈M̃n(z)〉 n→∞−−−→ α(0)
y(0)

∫ 1

−1
K2(t)dt + 2

α(0)
y(0)

∫ c

−1
K(t)K(2c− t)dt

= V,(5.6)

uniformly in probability. This completes the proof of Theorem 3.1.

Proof of Theorem 3.2.
First, we observe that

√
nh

(
α0(x)− Eα̃n(x)

) → 0 by the assumption (3.8).
Moreover,

√
nh(α0(x)− α(x)) ∼=

√
nh (Eα̃n(x)− α(x)) =

√
nhO(h2) = O(

√
nh5) → 0.

and
√

nh (α̃n(x)−Eα̃n(x)) =
√

nh (α̃n(x)− α̃∗n(x)) +
√

nh (α̃∗n(x)−Eα̃n(x))

= A1 + A2,

and
√

nh (α̃n(x)− α(x)) =
√

nh (α̃n(x)− α̃∗n(x)) +
√

nh
(
α̃∗n(x)− α0(x)

)

+
√

nh
(
α0(x)− α(x)

)
= A1 + B2 + B3,

where A1 converges to N(0, V ) from Theorem 3.1, and it is easy to show
that A2, B2 and B3 converge to 0. This finishes the proof of 3.17 and 3.18.
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Proof of Lemma 3.2.
Without loss of generality we prove this lemma only for x = h. First, we

show that |α̂n(x)− α(x)| P∼= O(h2) and E(α̂n(x)−α(x))2 ∼= O(h4), where α̂n

is defined by (2.1). Formulas (3.24) and (3.25) are a direct consequence of the
facts mentioned above (respectively) and the assumption that h = O(n−1/5).
Namely, we have

|α̂n(x)− α(x)| =
∣∣∣∣
1
h

∫ ∞

0
K

(
x− s

h

)
Jn(s)
Yn(s)

dNn(s)− α(x)
∣∣∣∣

≤
∣∣∣∣
1
h

∫ ∞

0
K

(
x− s

h

)
Jn(s)α(s)ds− α(x)

∣∣∣∣

+
∣∣∣∣
1
h

∫ ∞

0
K

(
x− s

h

)
Jn(s)
Yn(s)

dMn(s)
∣∣∣∣

= J11(x) + J22(x).(5.7)

It can be shown that

J11

P∼=
∣∣∣∣
1
h

∫ x+h

0
K

(
x− s

h

)
α(s)ds− α(x)

∣∣∣∣

=
∣∣∣∣
∫ 1

−1
K(t)(α(x− ht)− α(x))dt

∣∣∣∣

=
∣∣∣∣
∫ 1

−1
K(t)

(
α(x)− α(1)(x)ht +

1
2
α(2)(x)h2t2 − α(x) + o(h2)

)∣∣∣∣

=
∣∣∣∣−α(1)(x)h

∫ 1

−1
K(t)tdt +

1
2
α(2)(x)h2

∫ 1

−1
K(t)t2dt

∣∣∣∣ + o(h2)

=
∣∣∣∣
1
2
α(2)(x)h2

∫ 1

−1
K(t)t2

∣∣∣∣ + o(h2)

P= O(h2).(5.8)
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Note that by Chebyshev inequality

J22

P∼= O(h2).(5.9)

Moreover, by Vallee-Poussin theorem ([8], p.17) J22 is uniformly integrable.
Substituting (5.8) and (5.9) into (5.7) we obtain

(5.10) |α̂n(x)− α(x)| P∼= O(h2) for x = h.

Now we show the second formula

E (α̂n(x)− α(x))2 = E

(
1
h

∫ ∞

0
K

(
x− s

h

)
Jn(s)
Yn(s)

dNn(s)− α(x)
)2

= E

(
1
h

∫ x+h

0
K

(
x− s

h

)
Jn(s)α(s)ds− α(x)

)2

+ E

(
1
h

∫ x+h

0
K

(
x− s

h

)
Jn(s)
Yn(s)

dMn(s)
)2

+ 2
(

1
h

∫ x+h

0
K

(
x− s

h

)
Jn(s)α(s)ds− α(x)

)

×
(

1
h

∫ x+h

0
K

(
x− s

h

)
Jn(s)
Yn(s)

dMn(s)
)

= L1 + L2 + L3.(5.11)

It can be shown that
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L1 =

=
1
h2

E

(∫ x+h

0

∫ x+h

0
K

(
x− s

h

)
K

(
x− v

h

)
α(s)α(v)Jn(s)Jn(v)dsdv

)

+ α2(x)− 2α(x)
h

E

∫ x+h

0
K

(
x− s

h

)
Jn(s)α(s)ds

∼= 1
h2

∫ x+h

0

∫ x+h

0
K

(
x− s

h

)
K

(
x− v

h

)
α(s)α(v)dsdv

+ α2(x)− 2α(x)
h

∫ x+h

0
K

(
x− s

h

)
α(s)ds

=
(∫ 1

−1
K(t)α(x− ht)dt

)2

+ α2(x)− 2α(x)
∫ 1

−1
K(t)α(x− ht)dt

∼=
[
α(2)(x)

]2

4
h4

(∫ 1

−1
K(t)t2dt

)2

∼= O(h4)(5.12)

and

L2 =
1
h2

∫ x+h

0
K2

(
x− s

h

)
E

Jn(s)
Yn(s)

α(s)ds

∼= 1
h2

∫ 1

−1
K2

(
x− s

h

)
α(s)
ny(s)

ds

≤ C

nh

∫ 1

−1
K2(t)α(x− ht)dt ∼= O

(
1

nh

)
= O(h4),(5.13)

where we make use of the fact h ∼= n−1/5.
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Moreover, by Schwartz’s inequality we have

L3 ≤ 2
√

L1

√
L2
∼= O(h4).(5.14)

Similarly, we can prove both above facts for x = 0. This finishes the proof
of Lemma 3.2.

Proof of Lemma 3.3.

Let Dn and D be defined by (3.20), (3.12), respectively, then

|Dn −D| =
∣∣∣∣
(

Dn − log α(h)− log α(0)
h

)
+

(
log α(h)− log α(0)

h
−D

)∣∣∣∣

= |J1 + J2| ≤ |J1|+ |J2|.(5.15)

By Taylor’s expansion of log(·), we have

|J2| =

=

∣∣∣∣∣∣
log α(0)+ α(1)(0)

α(0) h+ 1
2

α(2)(0)α(0)−(α(1)(0))2

α2(0)
h2− log α(0) + o(h2)

h
−α(1)(0)

α(0)

∣∣∣∣∣∣

(5.16)

=

∣∣∣∣∣
1
2
h

α(2)(0)α(0)− (α(1)(0))2

α2(0)

∣∣∣∣∣ + o(h) = O(h).
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Note that

|J1| =
∣∣∣∣
log αn(h)− log αn(0)

h
− log α(h)− log α(0)

h

∣∣∣∣

=
∣∣∣∣
log αn(h)− log α(h)

h
− log αn(0)− log α(0)

h

∣∣∣∣

≤ 1
h

(| log αn(h)− log α(h)|+ | log αn(0)− log α(0)|) .

Applying Taylor’s expansion of the function log(·), for x = 0, h, we have

| log αn(x)− log α(x)| =
∣∣∣∣

αn(x)− α(x)
α(x) + δ(αn(x)− α(x))

∣∣∣∣

=
∣∣∣∣

αn(x)− α(x)
α(x)(1− δ) + δαn(x)

∣∣∣∣

≤ 1
α(x)(1− δ)

|αn(x)− α(x)|

P= O(h2),

where 0 ≤ δ ≤ 1 is a constant. The last equality follows from Lemma 3.2.
Therefore,

(5.17) J1
P= O(h).

Combining (5.15), (5.17) and (5.16) we conclude the proof of formula 3.26,
3.27 can be proved similarly.
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Proof of Theorem 3.3.
We have

Eα̂new(x)− α(x) = (Eα̂new(x)− Eα̃n(x)) + (Eα̃n(x)− α(x))

= K + (Eα̃n(x)− α(x)),

where

|K| =
∣∣∣∣E

(
1
h

∫ ∞

0

[
K

(
x− s

h

)
+ K

(
x + ϕn(s)

h

)]
Jn(s)
Yn(s)

dNn(s)

− 1
h

∫ ∞

0

[
K

(
x− s

h

)
+ K

(
x + ϕ(s)

h

)]
Jn(s)
Yn(s)

dNn(s)
)∣∣∣∣

=
∣∣∣∣E

(
1
h

∫ x+h

0

[
K

(
x + ϕn(s)

h

)
−K

(
x + ϕ(s)

h

)]

× 1 {s ∈ [0, ph], p > 1} Jn(s)
Yn(s)

dNn(s)
)∣∣∣∣ .

Applying Taylor’s expansion, we obtain

|K| ∼=
∣∣∣∣E

(
1
h

∫ x+h

0
K(1)

(
x + ϕ(s)

h
+

ϕn(s)− ϕ(s)
h

δ

)
ϕn(s)− ϕ(s)

h

× 1 {s ∈ [0, ph], p > 1} Jn(s)
Yn(s)

dNn(s)
)∣∣∣∣ .

≤ CE

∣∣∣∣
1
h2

∫ x+h

0
(ϕn(s)− ϕ(s)) 1 {s ∈ [0, ph], p > 1} Jn(s)

Yn(s)
dNn(s)

∣∣∣∣

≤ C

h2
E

∫ x+h

0
|ϕn(s)− ϕ(s)| 1 {s ∈ [0, ph], p > 1} Jn(s)

Yn(s)
dNn(s),
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where 0 ≤ δ ≤ 1 and C are constants. It is easy to see that ϕ(x) ≥ h
for x ≥ ph, where p = 4A

4A−1 and by the assumption A > 1/3. Hence for
x ∈ (0, ph) we have

|ϕn(x)− ϕ(x)| =
∣∣x2(Dn −D) + Ax3(D2

n −D2)
∣∣

≤ ∣∣p2h2(Dn −D)
∣∣ +

∣∣Ap3h3(D2
n −D2)

∣∣ .

So, we can write

|K| ≤ C

h2
E

[∫ x+h

0
p2h2|Dn −D|1{s ∈ (0, ph)}Jn(s)

Yn(s)
dNn(s)

+
∫ x+h

0
Ap3h3|D2

n −D2|1{s ∈ (0, ph)}Jn(s)
Yn(s)

dNn(s)
]

=
C

h2
E

∫ x+h

0
p2h2|Dn −D|1{s ∈ (0, ph)}Jn(s)

Yn(s)
dNn(s)

+
C

h2
E

∫ x+h

0
Ap3h3|D2

n −D2|1{s ∈ (0, ph)}Jn(s)
Yn(s)

dNn(s)

= K1 + K2.(5.18)

By Lemma 3.3 and uniform integrability of K1 we have

(5.19) K1 = O(h2).

Also K2 is uniformly integrable and

(5.20) K2 = O(h4),

which can be proved using the following
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|D2
n −D2| = |D2

n − 2DnD + D2 + 2DnD − 2D2|

= |(Dn −D)2 + 2D(Dn −D)|

≤ |Dn −D|2 + 2D|Dn −D| P= O(h2) + O(h) P= O(h).

The last equality is a consequence of Lemma 3.3.
Combining (5.19) and (5.20) we obtain

(5.21) |K| = O(h2),

which completes the proof of (3.30).

Proof of Theorem 3.4.
Note that

√
nh (α̂new(x)− α̂∗new(x)) =

√
nh (α̂new(x)− α̃n(x))

+
√

nh (α̃n(x)− α̃∗n(x))

+
√

nh (α̃n(x)− α̂∗new(x))

= J1 + J2 + J3,(5.22)

where

|J1| ≤
√

n

h3
C

∫ x+h

0
|ϕn(s)− ϕ(s)|1{s ∈ [0, ph]}Jn(s)α(s)ds

+
√

n

h3
C

∫ x+h

0
|ϕn(s)− ϕ(s)|1{s ∈ [0, ph]}Jn(s)

Yn(s)
dMns

= J1
1 + J2

1 .(5.23)



36 B. Janiszewska and R. Różański

It can be shown by Lemma 3.3 that

J1
1 ≤

√
n

h3
C

∫ x+h

0

× (
p2h2|Dn −D|+ Ap3h3|Dn −D|2 + 2Ap3h3D|Dn −D|)

× 1{s ∈ [0, ph]}α(s)ds

∼= O(
√

nh5) −→ 0.(5.24)

Furthermore, by (3.7) we obtain

J2
1
∼=

√
n

h3
C

∫ x+h

0
|ϕn(s)− ϕ(s)|1{s ∈ [0, ph]} 1

ny(s)
dMn(s)

≤ C1√
nh3

∫ x+h

0

(
ph2|Dn−D|+Ap3h3|Dn−D|2+Ap3h32D|Dn−D|)

(5.25)

×1{s ∈ [0, ph]}dMn(s)

∼= C1√
nh3

O(h4)
∫ x+h

0
dMn(s)

P∼= C2h
5/2

∫ x+h

0

1√
n

dMn(s)

P−→ 0,

where C and Ci are constants. So J1 → 0 in probability. The quantity
J2

D→ N(0, V ), which follows from Theorem 3.1. Similarly as for J1
1 we can

prove that J3

P∼= O(
√

nh5) and tends to 0 as nh5 → 0. This completes the
proof of formula (3.31). Moreover, similarly we obtain formula (3.32) and
by analogy to Theorem 3.2 we obtain formulas (3.33) and (3.34).
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