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Abstract

An extension of the Rasch model with correlated latent variables
is proposed to model correlated binary data within families. The la-
tent variables have the classical correlation structure of Fisher (1918)
and the model parameters thus have genetic interpretations. The pro-
posed model is fitted to data using a hybrid of the Metropolis-Hastings
algorithm and the MCEM modification of the EM-algorithm and is il-
lustrated using genotype-phenotype data on a psychological subtest
in families where some members are affected by the genetic disorder
fragile X. In addition, hypothesis testing and model selection methods
based on the Wald statistic are discussed.
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1. Introduction

In the study of genetic disorders and genotype-phenotype relationships cat-
egorical outcomes are often of interest. In particular, many psychological or
clinical test items have categorical outcomes and an analysis of these data
is important in understanding how genetic disorders affect cognitive and
clinical status. However, the analysis of categorical outcomes from family
data is not well developed and is less well understood than that of quantita-
tive data. The analysis of quantitative family data under the multivariate
normal model is well established, has been extensively applied and the pa-
rameters are readily interpreted. In particular, the arguments of Fisher
(1918) and approach of Lange et al. (1976), Hopper & Mathews (1982),
Hopper (1993) allow the estimation of genetic and environmental variance
components of a polygenic trait from family data, as well as the effect of a
genetic disorder on trait mean. Here we propose a latent variable approach
to model the correlations between individuals within the same family so that
the standard, readily interpretable models commonly used in quantitative
genetics may be applied to binary family data.

1.1. Motivation

We are motivated by correlated binary data arising in a large of families
affected by the fragile X syndrome. This disorder is one of the most common
inherited forms of intellectual disability and results in a deficit of a protein
(FMRP) in affected individuals. We illustrate our approach by considering
aspects of the Behaviour Dyscontrol Scale (BDS), which is a measure of the
capacity to use intentions to guide the performance of purposeful behaviour.
We consider item 2, “Tap twice with non-dominant hand and once with
dominant hand in a series” was rated on a scale of 0-3, with 3 representing
no errors and 0 poor performance. Here we combine the categories 2 & 3
as ”good performance” and 0 & 1 as ”poor performance”. The data on
this variable consisted of 218 observations from 46 families affected with
the fragile X condition. The biological interest is in whether there is any
effect of FMRP on high motor control represented by item 2 of BDS after
adjusting for FSIQ (full scale IQ), as this implies that this protein deficit
affects some specific cognitive processes disproportionately to overall in-
tellectual impairment, and in estimation of the genetic and environmental
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correlations between relatives. A boxplot of FMRP levels for the two
categories (good and poor performance, respectively) are given in Figure 1.
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Figure 1. Box plot of FMRP for poor performing (0) and better performing groups
(1) on the BDS subtest.

It is clear from the plot that FMRP can predict performance on this test.
However, we will also include FSIQ and sex as fixed effects in the mean
model, and simultaneously take the performance of other family members
into account through a covariance model.

1.2. Modelling correlated binary data

There are several possible approaches to the modelling of categorical family
data. The models of Bonney (1986) for binary data have the advantage of
being easily fitted to data using standard logistic regression methods. How-
ever, Bonney (1986) only models relationships between family members and
does not include genetic and environmental factors. As noted in FitzGerald
and Knuiman (1998), there are problems in interpretation of the Bonney
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models if there are missing data. An alternate approach using latent vari-
ables and a threshold is possible for uncorrelated binary data (eg. Albert &
Chib 1993). In these models, values of the latent variable above a thresh-
old are associated with the occurrence of the event. Albert & Chib (1993)
propose a Gibb’s sampling approach to these models and a review of the
methods are contained in Chib (2000).

Latent variable models for the correlations between relatives have many
attractions, particulary if the categorical outcome is the manifestation of an
underlying polygenic effect. The Rasch model (Rasch 1980) is commonly
used to model random effects via latent variable, see Fischer & Molenaar
(1995) for an extensive review of the model in the item response setting
and Albert & Ghosh (2000) for a Bayesian approach. We prefer this model
to the threshold models as it associates a large value of the latent variable
with a high probability of the occurrence of the event rather than the certain
occurrence of the event. In its simplest form, if X ∼ f(x|θ) represents the
latent variable, and y is a binary outcome taking the value 1 if the event
occurs and zero otherwise, then logit (P (Y = 1|X = x)) = x, and interest is
in the estimation of θ from observations on Y . However, when data arises
from family studies, the outcomes within a family may be correlated due to
both genetic and common environment effects. That is, the latent variables
X for different individuals within a family may be correlated, with the
correlation being due to both shared genes and shared environment. The
interest is then in estimating these genetic and environmental effects.

Here we adapt well known quantitative models for genetic and environ-
mental correlation and use the Rasch model to relate latent variables to the
binary outcome Y . The model is fitted using a variation of the EM algo-
rithm where the E-step is implemented by the Metropolis-Hastings (MH)
algorithm, a Markov chain Monte Carlo (MCMC) sampling technique, and
the M-step by the Newton-Raphson algorithm. The idea of using an MCMC
approximation in the E-step was motivated by Wei and Tanner (1990) who
used a Monte Carlo approximation and called it the MCEM algorithm. Guo
and Thompson (1994) used the MCEM, implemented by the Gibbs sampler
in the E-step, in fitting a linear mixed model for complex pedigree data.
Applications of the MCEM can also be found in the analyses of time series
involving small counts (Chan and Ledolter 1995) and of grouped survival
data (Sinha et al. 1994).
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2. The rasch model for pedigree data

We suppose a binary outcome is dependent on both observed covariates,
z, and unobserved latent variables, x. Let j = 1, · · · , J denote the fam-
ilies in the study, with family j containing nj members. Let Yji = 1 if
individual i in family j has a positive outcome and 0 otherwise, zji denote
a p × 1 vector of covariates associated with individual i in family j and
Zj = (zj1, · · · , zjnj )

T the corresponding design matrix for family j. The
conditional dependence between Yij and the covariates zji given the latent
variable x·ji, corresponding to individual i in family j, is assumed to follow
the logistic model

P (Yji = 1|x·ji) =
ex·ji+zT

jiβ

1 + ex·ji+zT
ijβ

≡ πji(β; zji, x·ji).(1)

The latent variables associated with an individual are taken to depend on
polygenic effects that contribute to correlations between relatives. Two im-
portant elements of the genetic correlations between relatives are the addi-
tive and dominance (non-additive) genetic components, which are modelled
using the kinship matrix, Φj ≡ (φik)j , and Jacquard’s condensed coefficient
of identity matrix, ∆j ≡ (∆ik)j , defined in Lange et al. (1976) for exam-
ple. We omit assortive mating models as they would be more appropriate
to a variable like FSIQ than a specific executive ability. Thus, φii = 1

2 for
each individual i; and for each pair of relatives i and k, φik = 1

4 for first
degree relatives, 1

8 for second degree relatives, and so on. In the pedigrees
considered, ∆ii = 1 and ∆ik = 0.25 if i and k are full siblings and is zero oth-
erwise. The environmental correlation consists of individual and common
environment components. Therefore we introduce 4 independent latent vec-
tors xgj = (xgj1, · · · , xgjnj )

T (g = 1, 2, 3, 4 and j = 1, · · · , J) for each family
corresponding to the four components: additive genetic (g = 1), dominance
genetic (g = 2), individual environment (g = 3) and common environment
(g = 4). In the model (1) we take x·ji = x1ji + · · ·+x4ji. The latent vectors
for the different families are assumed to be independent. Each latent vector
xgj is assumed to follow a multivariate normal distribution MVN(0, σ2

gVgj)
where σ2

1 ≡ σ2
a, σ2

2 ≡ σ2
d, σ2

3 ≡ σ2
e , σ2

4 ≡ σ2
c , V1j ≡ Φj , V2j ≡ ∆j , V3j ≡ Ij ,

V4j ≡ Cj . Here Ij is the identity matrix and Cj is the identity matrix
plus a matrix of ones. Denoting x•j ≡ (x·j1, · · · , x·jnj )

T =
∑4

g=1 xgj , the
covariance matrix of x•j is then Ωj = σ2

aΦj + σ2
d∆j + σ2

eIj + σ2
cCj , which

summarizes the overall genetic and environmental variability of family j.



260 G. Qian, R.M. Huggins and D.Z. Loesch

(This differs from the usual definition as the additive component is typ-
ically taken as 2σ2

aΦj and for technical reasons in our calculations be-
low, Cj also differs from what is usual. Thus the usual additive genetic
variance is σ∗2a = σ2

a/2 and the usual individual environment variance is
σ∗2e = σ2

e + σ2
c .) If the xgj or x•j were observable, then the variance com-

ponents σ2 = (σ2
1, · · · , σ2

4)
T could be estimated using maximum likelihood

(Lange et al. 1976), or robust methods (Huggins 1993).

3. Fitting the model

Our interest is in the parameter vector θ = (βT , σ2
a, σ

2
d, σ

2
e , σ

2
c )

T . We sup-
pose that given the xgj and the Zj , the Yji are independent. Hence,
the conditional probability of Yj = (Yj1, · · · , Yjnj )

T given the xgj is

Lj(Yj |x1j , · · · ,x4j ; θ) =
∏nj

i=1 eYji(x·ji+zT
jiβ)(1 + ex·ji+zT

jiβ)−1 and the joint
probability function of Yj and (x1j , · · · ,x4j) is

Lj

(
Yj ,x1j , · · · ,x4j ; θ

)
=

nj∏

i=1

eYji(x·ji+zT
jiβ)

1 + ex·ji+zT
jiβ

×
4∏

g=1

(
2πσ2

g

)− 1
2
nj |Vgj |−

1
2 e{−

1
2
σ−2

g xT
gjV

−1
gj xgj}.

Hence the unconditional distribution of Yj is

Lj(θ) =
∫
· · ·

∫
Lj

(
Yj ,x1j , · · · ,x4j ; θ

)
dx1j · · · dx4j .(2)

Denote by Y = (YT
1 , · · · ,YT

J )T the response vector for all the J families.
The likelihood function for Y is then Ly(θ) =

∏J
j=1 Lj(θ). Directly max-

imizing Ly(θ) to find the MLE of θ is computationally difficult as many
multiple integrals are involved in Ly(θ).

To overcome these computational difficulties we apply the EM algorithm
together with an MCMC sampling technique and the Newton-Raphson
algorithm to find the MLE of θ. This is motivated by the following facts:
Firstly, the complete-data likelihood involves only the logistic and the
multivariate normal density functions but not any multiple integration.
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Hence it would be relatively easy to estimate θ using the Newton-Raphson
algorithm if Y = (YT

1 , · · · ,YT
J )T , the covariate matrices {Z1, · · · ,ZJ} and

the latent variables Xg = (xT
g1,· · · ,xT

gJ)T (g = 1, 2, 3, 4) were observed. Sec-
ondly, the conditional distribution of xgj given Yj , although complicated,
may be simulated by the MH algorithm, as the distributions of xgj and Yj

given x•j are both well known.
The complete-data log-likelihood of θ for given Y and {Xg, g = 1, · · · , 4}

is

`yx

(
θ;Y,X1, · · · ,X4

)
= `y|x

(
β;Y|X1, · · · ,X4

)
+

4∑

g=1

`xg

(
σ2

g ;Xg

)
(3)

where

`y|x
(
β;Y|X1, · · · ,X4

)

=
J∑

j=1

nj∑

i=1

log
{

eYji(x·ji+zT
jiβ)

(
1 + ex·ji+zT

jiβ
)−1

}(4)

is the conditional log-likelihood of Y given {Xg, g = 1, · · · , 4}, and

`xg

(
σ2

g ;Xg

)

= −1
2

J∑

j=1

nj log 2πσ2
g −

1
2

J∑

j=1

log |Vgj | − 1
2
σ−2

g

J∑

j=1

xT
gjV

−1
gj xgj

(5)

is the marginal log-likelihood of Xg. In order to use the EM algorithm we
let θ′ = (β′T , σ2′T )T and define

Q
(
θ, θ′

)
= E

(
`y|x

(
β;Y|X1, · · · ,X4)|Y, θ′

)

+
4∑

g=1

E
(
`xg

(
σ2

g ;Xg)|Y, θ′
)(6)
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which is the conditional expectation of the complete-data log-likelihood with
respect to the conditional distribution of {Xg, g = 1, · · · , 4} given Y and
θ = θ′. Then (see e.g. Dempster et al. 1977) the MLE of θ is obtained
by iteratively updating the maximizer of Q(θ, θ′) for the current estimate θ′

until convergence is attained.
From (4) and (5) we see that β appears only in the first term of (6)

while σ2
g appears only in one of the summation terms in (6). Moreover, it

is easy to show that (6) is second order differentiable with respect to θ and
has a unique maximizer. Therefore, suppose θ̂(r) = (β̂T (r), σ̂2T (r))T is the
r-th step estimate of θ arising from the EM algorithm, the (r + 1)-th step
estimate of θ can be obtained by solving

∂

∂β
Q(θ, θ̂(r)) =

∂

∂β
E(`y|x(β;Y|X1, · · · ,X4)|Y, θ̂(r)) = 0(7)

∂

∂σ2
g

Q(θ, θ̂(r)) =
∂

∂σ2
g

E(`xg(σ2
g ;Xg)|Y, θ̂(r)) = 0, g = 1, 2, 3, 4.(8)

The equations (7) and (8) can be solved by either Newton-Raphson or Fisher
scoring method if the conditional expectations involved are easily evaluated
(see Appendix 2).

Note that from (2) the conditional distribution of {Xg, g = 1, · · · , 4}
given Y is

J∏

j=1

Lj(x1j , · · · ,x4j |Yj , θ) =
J∏

j=1

(Lj(θ))
−1 Lj(Yj ,x1j , · · · ,x4j ; θ),(9)

which according to (2) involves 4 × ∑J
j=1 nj integrals. Thus an exact

evaluation of the conditional expectations, and hence Q(θ, θ′), is infeasible
because of the complexity of this conditional distribution. To overcome
this, one can apply the MH algorithm (see e.g. Chib and Greenberg 1995)
or related MCMC techniques to generate a sample of {Xg, g = 1, · · · , 4}
values from the conditional distribution (9). Then the conditional expecta-
tions in (7), (8) and Q(θ, θ′) can be approximated by conditional averages
based on the generated sample. For the conditional distribution (9), it
is particularly convenient to use an MH algorithm where we choose the
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multivariate normal as the operating transition density and an easily veri-
fied acceptance-rejection condition. The between-within variance criterion
of Gelman and Rubin (1992) can be used to monitor the convergence of
the MH algorithm. Details of the algorithm are given in the appendix.
Implementation of the MCEM algorithm is also discussed in Appendix 1.

3.1. Convergence in the MCEM algorithm

An important difference between MCEM and EM algorithms is that the
observed-data likelihood always increases along an EM sequence while this
is not guaranteed in MCEM (e.g. Tanner 1996, Section 4.5). In solving (7)
and (8) we replace Q(θ, θ̂(r)) by its MCMC approximation Q̃(θ, θ̂(r)). Thus
the numerical solution θ̂(r+1) is only the maximizer of Q̃(θ, θ̂(r)) but not of
Q(θ, θ̂(r)). Consequently, the estimated likelihood sequence {L̃y(θ̂(r)} — a
Monte Carlo approximation of {Ly(θ̂(r)} — is not increasing and θ̂(r) does
not necessarily converge as r → ∞. Thus, unlike the EM algorithm, there
is no precise rule for determining the convergence of the MCEM algorithm.
However, the sequence {L̃y(θ̂(r)} often exhibits an increasing trend; and
provided that the approximation error between Q̃(θ, θ̂(r)) and Q(θ, θ̂(r)) is
small enough, the sequence will fluctuate around the value of the maximized
observed-data likelihood once r becomes sufficiently large. The sequence
{θ̂(r)} would also fluctuate around the MLE θ̂ when r is sufficiently large.
Chan and Ledolter (1995) showed that under suitable regularity conditions
the MCEM sequence of the parameter estimate updates becomes close to
the MLE with high probability. Therefore, to monitor the convergence of
MCEM algorithm we can plot L̃y(θ̂(r)) as well as θ̂(r) against iteration
number r. We terminate the algorithm when the sequence becomes station-
ary. Otherwise, we continue by increasing the Monte Carlo precision in the
E-step provided that the required computation is computationally feasible.
The final MLE θ̂ and L̃y(θ̂) are approximated by the corresponding aver-
ages of the {θ̂(r)} and {L̃y(θ̂(r))} sub-sequences in the stationarity state.
In Appendix 1 we will show that for our model, monitoring the convergence
of MCEM using {L̃y(θ̂(r))} may be more reliable than using θ̂(r).

3.2. The standard error of θ̂

Large sample theory yields that under regularity conditions asymptoti-
cally the MLE θ̂ has a normal distribution MVN(θ, I−1(θ)). We estimate
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I(θ̂) by the observed information matrix Jθ̂(Y)=−∂2 log Ly(θ)/∂θ∂θT |θ=θ̂.
Applying a basic result of Louis (1982) and Tanner (1996, Section 4.4.3)
one can show that Jθ̂(Y) is


−∂2Q(θ, θ′)

∂θ∂θT
−Var{

J∑

j=1

∂

∂θ
log Lj(Yj ,x1j , · · · ,x4j ; θ)|Y, θ′}




θ=θ′=θ̂

(10)

which can be represented as Observed information = Complete information
− Missing information, implying that the unobserved latent variables xgj

increase the variability in the MLE θ̂. The first term in the right hand
side of (10) is approximately −∂2Q̃(θ, θ′)/∂θ∂θT |θ=θ′=θ̂ and is available as
a byproduct of computing θ̂. The conditional variance in the second term
of (10) can be estimated by the sample variance after samples of {xgj , j =
1, · · · , J ; g = 1, · · · , 4} are generated from the conditional distribution (9)
using the MH algorithm. We provide the details of the estimation of Jθ̂(Y)
in Appendix 4 where it is noted that the estimate may not be positive
definite. An empirical approach to obtain a positive definite estimate of
Jθ̂(Y) with low degree of singularity is to multiply the sample variance term,
which estimates the missing information, by a positive scalar λ ≤ 1. This
approach is similar to that used in ridge regression for handling collinearity
and near singularity of the design matrix. The optimal value of λ is then
chosen in such a way that the resulting estimate of Jθ̂(Y) is positive definite
and has the same degree of non-singularity (defined by the condition number
of the matrix) as the estimate −∂2Q̃(θ, θ′)/∂θ∂θT |θ=θ′=θ̂ of the complete
information. This will be illustrated in Section 4 and further discussed in
Appendix 4.

3.3. Inference for the variance components by the wald test

We illustrate the approach by testing for the effects of the non-additive ge-
netic and common environment variance components in the model and focus
on testing H0 : σ2

d = σ2
c = 0 against H1 : no restrictions on σ2

d and σ2
c .

Three possible methods for testing these hypotheses are the Wald test,
the score test and the likelihood ratio test. We found that the Fisher
information matrix associated with the score test was not definite,
the Monte Carlo approximations possibly resulted in negative values
of the log likelihood ratio statistic so it was not applicable, and the
distribution of the predictive likelihood ratio statistic was intractable.
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Therefore, we use the Wald test. Let θ(H) and θ̂(H) denote the values of
θ and its MLE respectively under a hypothesis H. The Wald test statistic
is W = (σ̂2

d(H1), σ̂2
c (H1)){Var(σ̂2

d(H1), σ̂2
c (H1))}−1(σ̂2

d(H1), σ̂2
c (H1))T which

asymptotically has a χ2
2 distribution under H0 and does not require any sig-

nificant extra computation beyond that involved in finding the MLE σ̂2(H1)
and its estimated covariance matrix under H1. The precision of W is de-
pendent on that of (σ̂2

d(H1), σ̂2
c (H1)) and their estimated covariance, which

may be constrained by the high computational cost of achieving a close
approximation in the MCEM algorithm.

Sommer & Huggins (1996) introduced a variable selection procedure
based on the Wald test that is equivalent to Mallow’s Cp in linear regression.
Let S denote the number of parameters in the full model, write θT = (θT

1 , θT
2 )

where θ1 is the p-dimensional vector of parameters in the sub-model of
interest and θ2 = 0 for this model. Similarly partition the covariance matrix
Σ = J−1

θ̂
(Y) as

(
Σ11 Σ12

Σ21 Σ22

)
.

Let θ̂T = (θ̂T
1 , θ̂T

2 ) be the estimate of θ arising from the full model. Then the
Wald test of H0 : θ2 = 0 is based on the statistic Wp = θ̂T

2 Σ−1
22 θ̂2. Sommer

& Huggins (1996) then compute Tp = Wp − S + 2p and plot this against p.
Models with Tp values close to or less than p yield reasonable models for
the data.

4. Application

The models for good or poor performance on item 2 of the BDS were fit-
ted by the hybrid of MH and MCEM algorithms. We consider the Rasch
model: logitP (Yji =1)=x1ji+x2ji+x3ji+x4ji+β0+β1sex+β2FMRP+β3FSIQ
where xgji’s are latent variables defined in Section 2 and sex takes the
value 1 for females and 0 for males. In applying the MCEM algorithm,
we generated a sequence of 500 replicates of θ̂(r) to find the MLE of
θ. The parameters K and B in the MCE-step were chosen to be 1,000
for the first 100 θ̂(r)s; 5,000 for the next 100 θ̂(r)s; 10,000 for the next
40 θ̂(r) and 20,000 for the final 260 θ̂(r)s. When using the MH algo-
rithm to generate the conditional distribution in the MCE-step, the first
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1,000 in the sequence was discarded, which was sufficient for the remain-
ing to be stationary. (This was tested using the Gelman-Rubin between-
within variance criterion.) The performance is summarized in Figure 2.
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Figure 2. Plotted row-by-row are the MCEM sequences of θ̂(r), L̃y(θ̂(r)),
L̃y(θ̂(r)|Y), and moving averages (in span 10) of L̃y(θ̂(r)) and
L̃y(θ̂(r)|Y) for BDS data.

Plotted from left to right then from top to bottom are the MCEM
sequences of β̂0(r), β̂1(r), β̂2(r),β̂3(r), σ̂2

a(r), σ̂2
d(r), σ̂2

e(r), σ̂2
c (r), observed-

data log-likelihood log L̃y(θ̂(r)), predictive posterior log-likelihood
log L̃y(θ̂(r)|Y) (defined in Appendix 5), and moving averages (of span 10) of
log L̃y(θ̂(r)) and log L̃y(θ̂(r)|Y). Plots of the moving averages of log L̃y(θ̂(r))
make the increasing trend of log L̃y(θ̂(r)) more stand-out. As explained in
Appendix 1, some sequences of the variance components estimates do not
converge. But by examining the sequences of β̂(r)’s and log L̃y(θ̂(r)), one
may regard the MCEM process becoming stationary after about 250 itera-
tions. Therefore, the MLE of θ was taken to be the average over the last
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250 iterations, θ̂ = 250−1 ∑500
r=251 θ̂(r). Then the method of Section 3.2 is

used to compute Var(θ̂) and the standard errors. Table 1 lists the values of
θ̂ and their standard errors for some candidate values of λ (see Appendix 4).

Table 1. Estimates of θ for BDS data. The p-values for covariate effects
are calculated based on the approximate two-sided z-test while the
p-values for variance components are obtained based on the Wald test.
(σ2∗

a = σ2
a/2 which is the usual parameterization of the model.)

Term Estimate Standard Error at different values of λ p-value

0.50 0.95 0.96 0.97 0.98 0.99 1.0

Intercept -9.667 1.646 1.875 1.912 2.034 1.732 1.911 2.099 0.0000

Sex 1.384 0.683 0.769 0.779 0.816 0.708 0.756 0.782 0.0755

FMRP 0.037 0.015 0.018 0.018 0.018 0.017 0.018 0.019 0.0364

FSIQ 0.104 0.026 0.029 0.029 0.030 0.028 0.029 0.030 0.0004

σ2∗
a 0.721 0.097 0.277 0.318 0.441 NA 0.239 0.329 0.0235

σ2
d 1.632 0.220 0.775 0.945 1.477 NA 0.160 1.035 0.0843

σ2
e 1.902 0.254 0.673 0.725 0.794 0.881 1.024 1.317 0.0087

σ2
c 0.235 0.032 0.117 0.143 0.226 NA NA 0.151 0.1007

The selected λ and standard errors are printed in italics in the table
and were used to compute the p-values. Also the NAs are the re-
sults of non-positive definite estimate of Jθ̂(Y) and Var(θ̂) computed
at certain λ values. Shown in Figure 3 are the plots of the esti-
mated variances for every θ̂ component and the condition numbers of
estimates of Jθ̂(Y) (or equivalently Var(θ̂)) against values of λ in [0,1].
From the plots of condition numbers and the discussion in Appendix 4,
we see the optimal λ value 0.96 should be used for estimating Jθ̂(Y)
and Var(θ̂).

We tested the effects of the variance components σ2
d and σ2

c , by the
Wald test. The test statistic is W = 3.8446 which follows a χ2

2 distribution.
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Figure 3. Plots for BDS data of variances of θ̂ and condition number of J̃θ̂(Y)
against λ. The bottom-right plot is the enlargement of part of the
bottom-left plot (λ ∈ [0, 0.97]).

Hence the p-value=0.1463 implying there is not strong statistical evi-
dence of jointly significant effects of σ2

d and σ2
c . The Tp plot of Figure 4

suggests a model (123457) containing all the fixed effects and additive
and individual environmental variance components as most appropriate.
The next two closest models (1234567, 1234578) both contain all the fixed
effects and additive and individual environment but one contains non-
additive genetic and the other common environment components. The
next model (1345678) contains all the fixed effects except sex and all four
variance components. In the interests of parsimony the model 123457
seems preferable, and this model was also one of the better models
for other values of λ near 0.96. In the full model, the main ef-
fects of FMRP and FSIQ are seen to be related to the probability
of a good performance on the BDS subtest examined and even after
adjusting for these variables there is a significant genetic correlation.
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Figure 4. Plot of Tp against p for BDS data.

We conclude there is an effect of FMRP deficit (and hence fragile X)
on BDS sub-test 2 beyond the effect on IQ and that after adjusting
for FSIQ there is still a significant (or close to significant) genetic
correlation between family members. The heritability in the full model
((0.5σ2

a + σ2
d)/(0.5σ2

a + σ2
d + σ2

e + 2σ2
c )) was 0.498.

5. Discussion

We have demonstrated that MCEM methods together with MCMC sam-
pling techniques may be applied to Rasch models for binary outcomes in
pedigree data to obtain estimates of genetic and environmental variance
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components that have an interpretation similar to those obtained in the
more conventional analyses of quantitative traits. With minor adjustments,
the method can be extended to models for categorical and ordinal data, and
this shall be considered elsewhere. Moreover, in the practical application of
the method, a more sophisticated treatment of missing values and refine-
ments of the programs to enable the more usual parameterization of the
variance components could also be considered.

The results obtained in fitting the model is biologically sensible, al-
though further models could be fitted to properly elucidate the correlation
structure. However, the results demonstrated a significant effect of shared
genes on familiar correlations for Item 2 of BDS, as well as a significant
effect of FMRP on the mean of this trait after adjustment for FSIQ. This
result is consistent with our earlier data obtained on the total BDS score by
analysis of quantitative family data under the multivariate normal model
(Loesch et al. 2002).

The major difficulty in the method is the approximations used in com-
puting the asymptotic covariance matrix that require an adaptive correction
to obtain estimates of the standard error. The observed information Jθ̂(Y)
is in theory positive definite. But its computed estimate J̃θ̂(Y) may not be
so, even when the MCEM algorithm attains stationarity, due to the Monte
Carlo approximation errors in estimating the variance term in (10) and
the estimation of Q(θ, θ′) by Q̃(θ, θ′). This is more likely to happen when
the observed-data likelihood is very flat along some directions, which im-
plies that the observed information Jθ̂(Y) could be quite ill-conditioned
and the missing information is very close to the complete information.
An alternative approach of estimating Jθ̂(Y) would be to use the sup-
plemented EM (SEM), properly modified, proposed by Meng and Ru-
bin (1991) in which Jθ̂(Y) is estimated by the estimated complete in-
formation multiplying a matrix (I − DM) with DM being determined
by the rate of convergence of EM. The difficulty with this approach is
that rate of convergence of MCEM does not have the same behaviour
pattern as that of EM. So there is an issue of how to get a conver-
gent estimate of I − DM being positive definite and not near-singular.
In addition, as with the SEM algorithm, the modified SEM would require
roughly (dim θ + 1)/2 times as much computational time as MCEM itself.
In our approach, however, the computational time of estimating Jθ̂(Y) is
only about that for computing one iteration in MCEM.



Application of the Rasch model ... 271

A. Appendix

A.1. Implementing the MCEM algorithm

The implementation of the MCEM algorithm used was:

1. Choose an initial estimate θ̂(0) = (β̂T (0), σ̂2
1(0), · · · , σ̂2

4(0))T for θ.

2. Repeat for r = 0, 1, · · · the following MCE- and M-steps until the Monte
Carlo approximation L̃y(θ̂(r)) of the likelihood Ly(θ̂(r)) does not show
an increasing trend and attains stationarity. An empirical stopping rule
is based on plotting L̃y(θ̂(r)) against r.

MCE-step: Generate a sample {(X(r)
11 , · · · ,X(r)

41 ), · · · , (X(r)
1K , · · · ,X(r)

4K)} of
size K from the conditional distribution (9) of {Xg, g = 1, · · · , 4} given Y
and θ = θ̂(r), using the MH algorithm of Appendix 3. The value K is de-
termined by a trade-off between the accuracy of θ̂(r) and the computational
intensity. Then replace Q(θ, θ̂(r)) in (7) and (8) by its MCMC approxima-
tion Q̃(θ, θ̂(r)) = K−1 ∑K

k=1 `yx(θ;Y,X(r)
1k , · · · ,X(r)

4k ).

M-step: Compute θ̂(r+1) = (β̂(r+1)T , σ̂2
1(r+1), · · · , σ̂2

4(r+1))T by solving
the renewed (7) and (8) using the Newton-Raphson algorithm. Estimate
the observed-data likelihood Ly(θ̂(r+1)) by its Monte Carlo approximation
L̃y(θ̂(r + 1)) = B−1 ∑B

b=1

∏J
j=1 Lj(Yj |x̂1jb(r + 1), · · · , x̂4jb(r + 1), θ̂(r + 1))

where x̂gjb(r + 1) ∼ MVN(0, σ̂2
g(r + 1)Vgj) (b = 1, · · · , B; g = 1, · · · , 4).

The most intensive computation lies in the generation of
{X(r)

g1 , · · ·,X(r)
gK , g = 1, · · · , 4} for each update θ̂(r + 1). The sample size

K usually needs to be very large in order to have good precision in the
Monte Carlo approximation. We found that the updates β̂(r) and L̃y(θ̂(r))
eventually became stationary but updates of the variance components σ̂2

g(r)
sometimes only showed an asymptotic tendency. There are two possible rea-
sons for this. Firstly, the observed-data likelihood Ly(θ) may be very flat
near the MLE of σ2

g so that the change of Ly(θ) about σ2
g is masked by the

Monte Carlo approximation error between Ly(θ) and L̃y(θ). The second is
that σ2

g = 0 is an absorbing state in generating {X(r)
g1 , · · · ,X(r)

gK , g = 1, · · · , 4}
by the MH algorithm. Once σ̂2

g(r) is very close to zero, σ̂2
g(r+1) will tend to

remain close to zero whether or not 0 is the MLE of σ2
g . In response to this,

we may regard the above MCEM process as having attained stationarity
once L̃(θ̂(r)) has.
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A.2. Computing θ̂(r + 1) by the Newton-Raphson Algorithm

Equations (4) to (8) yield:

∂

∂β
Q

(
θ, θ̂(r)

)
=

J∑

j=1

ZT
j

(
Yj − E

{
πj

(
β;Zj ,x•j

)
|Yj , θ̂(r)

})
(11)

where πj(β;Zj ,x•j) = (πj1(β; zj1, x·j1), · · · , πjnj (β; zjnj , x·jnj ))
T (without

causing confusion, this is abbreviated as πj(β;·)=(πj1(β; ·),· · ·, πjnj (β; ·))T );

∂2

∂β∂βT
Q

(
θ, θ̂(r)

)

= −
J∑

j=1

ZT
j diag

(
E

{
πj(β; ·)(1−πj(β; ·))|Yj , θ̂(r)

})
Zj

(12)

where diag(E{πj(β; ·)(1 − πj(β; ·))|Yj , θ̂(r)}) is the diagonal matrix
generated by E{πji(β; ·)(1− πji(β; ·))|Yj , θ̂(r)}, i = 1, · · · , nj ;

∂

∂σ2
g

Q
(
θ, θ̂(r)

)

= −1
2
σ−2

g

J∑

j=1

nj +
1
2
σ−4

g

J∑

j=1

E
{
xT

gjV
−1
gj xgj |Yj , θ̂(r)

}
,

(13)

g = 1, · · · , 4; and

∂2

∂σ2
g∂σ2

g′
Q

(
θ, θ̂(r)

)

=





1
2
σ−4

g

J∑

j=1

nj − σ−6
g

J∑

j=1

E
{
xT

gjV
−1
gj xgj |Yj , θ̂(r)

}
, if g = g′;

0, if g 6= g′.

(14)
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Based on (11) and (12) one can solve the equation (7) by Newton-Raphson
algorithm which starts from an initial value β̂(r, 0) = β̂(r) and calculates
β̂(r, s + 1) by taking this quantity to be

β̂(r, s)

+




J∑

j=1

ZT
j diag

(
E

{
πj

(
β̂(r, s); ·

)(
1−πj

(
β̂(r, s); ·

))
|Yj , θ̂(r)

})
Zj



−1

×
J∑

j=1

ZT
j

(
Yj − E

{
πj

(
β̂(r, s); ·

)
|Yj , θ̂(r)

})
.

(15)

When s is sufficiently large, β̂(r, s+1) will converge and the limit is β̂(r+1).
Following from (13) and (14) the solution of (8) is

σ̂2
g(r + 1) =


1/

J∑

j=1

nj




J∑

j=1

E
{
xT

gjV
−1
gj xgj |Yj , θ̂(r)

}
.(16)

In the actual computation, the conditional expections in (15)and (16) will
be replaced by the corresponding sample statistics given in Appendix 3.

A.3. Generating {X(r)
g1 , · · · ,X(r)

gK ; g = 1, · · · , 4} by MH algorithm

To generate a sample of size K from (9) for given Y and θ = θ̂(r), one can
use the following MH algorithm:

1. For each g = 1, · · · , 4 and j = 1, · · · , J , generate an x(r)
gj0 from

MVN(0, σ̂2
g(r)Vgj).

2. Repeat for t = 1, · · · ,K and for each j = 1, · · · , J . To get
(x(r)

1jt, · · · ,x(r)
4jt) first generate an nj × 1 vector x̃g = (x̃g1, · · · , x̃gnj )

T

from MVN(0, σ̂2
g(r)Vgj) for each g and a u from Unif(0, 1). Then set

(x(r)
1jt, · · · ,x(r)

4jt) = (x̃1, · · · , x̃4) if
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u ≤ α
(
x(r)
•j(t−1), x̃•

)
=min





nj∏
i=1

e
Yji(x̃·i−x

(r)

·j(t−1),i
)
(

1 + e
x

(r)

·j(t−1),i
+zT

jiβ̂(r)
)

1 + ex̃·i+zT
jiβ̂(r)

, 1





;

otherwise set (x(r)
1jt, · · · ,x(r)

4jt) = (x(r)
1j(t−1), · · · ,x

(r)
4j(t−1)). Here x(r)

•j(t−1) =
∑4

g=1 x(r)
gj(t−1) = (x(r)

·j(t−1),1, · · · ,x
(r)
·j(t−1),nj

)T and x̃• =
∑4

g=1 x̃g =
(x̃·1, · · · , x̃·nj )

T .

3. Return {x(r)
gj1,· · ·, x(r)

gjK ; g = 1,· · ·, 4; j = 1,· · ·, J} which is {X(r)
g1 ,· · ·,X(r)

gK ;
g = 1, · · · , 4}.

In practice one may generate a sufficiently long sequence and take only
the last K items as the sample {X(r)

g1 , · · · ,X(r)
gK ; g = 1, · · · , 4}. When this

sample is obtained, the conditional expectations in (15) and (16) will be
approximated by the following sampling statistics:

Ẽ
{
πji(β̂(r, s); ·)|Yj , θ̂(r)

}
=

1
K

K∑

k=1

πji

(
β̂(r, s); zji,x

(r)
·jk,i

)

=
1
K

K∑

k=1

ex
(r)
·jk,i

+zT
jiβ̂(r,s)

(
1 + ex

(r)
·jk,i

+zT
jiβ̂(r,s)

)−1

,

Ẽ
{
πji

(
β̂(r, s); ·

)(
1− πji

(
β̂(r, s); ·

))
|Yj , θ̂(r)

}

=
1
K

K∑

k=1

πji

(
β̂(r, s); zji,x

(r)
·jk,i

)(
1−πji

(
β̂(r, s); zji,x

(r)
·jk,i

))
,

Ẽ
{
xT

gjV
−1
gj xgj |Yj , θ̂(r)

}
=

1
K

K∑

k=1

x(r)T
gjk V−1

gj x(r)
gjk,

(17)

where g = 1, · · · , 4; i = 1, · · · , nj and j = 1, · · · , J .
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A.4. Estimating Jθ̂(Y)

Equation (6) yields

∂2Q(θ, θ′)
∂β∂σ2T

=
∂2Q(θ, θ′)
∂σ2∂βT

= 0.(18)

Now the first term ∂2Q(θ, θ′)/∂θ∂θT |θ=θ′=θ̂ in (10) can be estimated
using (12), (14), (17) and (18). To estimate the second term in (10) write

∂
∂θT log Lj(Yj ,x1j , · · · ,x4j ; θ)= (hj1(β,x•j)T ,hj2(σ2,x1j , · · · ,x4j)T ) where

hj1(β,x•j) =
∂

∂β
log Lj(Yj ,x1j , · · · ,x4j ; θ)

= ZT
j {Yj − πj(β;Zj ,x•j)} = ZT

j

{
Yj − ex•j+Zjβ

1 + ex•j+Zjβ

}
;

(19)

and hj2(σ2,x1j , · · · ,x4j)T = { ∂
∂σ2

g
log Lj(Yj ,x1j , · · · ,x4j ; θ); g = 1, · · · , 4}

with

∂

∂σ2
g

log Lj

(
Yj ,x1j , · · · ,x4j ; θ

)
= −1

2
σ−2

g nj +
1
2
σ−4

g xT
gjV

−1
gj xgj .(20)

When a sample {x(r)
gj1, · · · ,x(r)

gjK ; g = 1, · · · , 4; j = 1, · · · , J}, which is
actually a Markov chain, is generated by the MH algorithm from the
conditional distribution (9) at θ = θ̂(r) = θ̂, the sample variance of
{(hj1(β̂(r),x(r)

•jk)
T ,hj2(σ̂2(r),x(r)

1jk, · · · ,x(r)
4jk)

T ); k = 1, · · · ,K} may be
used to estimate the second term in (10). The estimation error of this
sample variance may cause the estimate of Jθ̂(Y) to be not positive defi-
nite. For this reason, we multiply the sample variance by a scalar λ, with
0 < λ ≤ 1, in estimating Jθ̂(Y) to obtain a positive definite estimate.
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Writing

Jθ̂(Y) = −∂2 log Ly(θ)
∂θ∂θT

∣∣∣∣∣
θ=θ̂

≡




−∂2 log Ly(θ)
∂β∂βT

−∂2 log Ly(θ)
∂β∂σ2T

−∂2 log Ly(θ)
∂σ2∂βT

−∂2 log Ly(θ)
∂σ2∂σ2T




∣∣∣∣∣∣∣∣∣∣
θ=θ̂

denote=




Jθ̂(Y)11 Jθ̂(Y)12

Jθ̂(Y)21 Jθ̂(Y)22


 ,

we can estimate the four partitions of Jθ̂(Y) as follows:

J̃θ̂(Y)11 =
J∑

j=1

ZT
j diag





1
K

K∑

k=1

ex
(r)
•jk

+Zj β̂(r)

(
1 + ex

(r)
•jk

+Zj β̂(r)
)2





Zj

− λ

K

J∑

j=1

K∑

k=1

h∗j1
(
β̂(r),x(r)

•jk
)
h∗j1

(
β̂(r),x(r)

•jk
)T

,

J̃θ̂(Y)12 = J̃θ̂(Y)T
21 =−λ

K

J∑

j=1

K∑

k=1

h∗j1
(
β̂(r),x(r)

•jk
)
h∗j2

(
σ̂2(r),x(r)

1jk, · · · ,x(r)
4jk

)T
,

J̃θ̂(Y)22 =diag



−

1
2
σ̂−4

g

J∑

j=1

nj+σ̂−6
g

1
K

J∑

j=1

K∑

k=1

x(r)T
gjk V−1

gj x(r)
gjk; g=1, · · · , 4





− λ

K

J∑

j=1

K∑

k=1

h∗j2
(
σ̂2(r),x(r)

1jk, · · · ,x(r)
4jk

)
h∗j2

(
σ̂2(r),x(r)

1jk, · · · ,x(r)
4jk

)T
,
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where

h∗j1
(
β̂(r),x(r)

•jk
)

= hj1

(
β̂(r),x(r)

•jk
)
−K−1

K∑

k′=1

hj1

(
β̂(r),x(r)

•jk′
)
,

and

h∗j2
(
σ̂2(r),x(r)

1jk, · · · ,x(r)
4jk

)
= hj2

(
σ̂2(r),x(r)

1jk, · · · ,x(r)
4jk

)

−K−1
K∑

k′=1

hj2

(
σ̂2(r),x(r)

1jk′ , · · · ,x(r)
4jk′

)
.

Denote λ∗ be the smallest value in [0,1] at which J̃θ̂(Y) is singular. If λ∗

exists, then J̃θ̂(Y) computed at λ = 1 must not be positive definite. So
a valid J̃θ̂(Y) has to be computed at some λ < λ∗, but not too close to
λ∗ to avoid near-singularity. If we define CN(λ) as the condition number
(i.e, maximum absolute eigenvalue/minimum absolute eigenvalue) of J̃θ̂(Y)
computed at λ. Then typically that CN(λ) decreases as λ increases away
from 0 and then increases as λ approaches λ∗. An optimal value of λ for
computing J̃θ̂(Y) would be the maximum λ < λ∗ satisfying CN(λ)=CN(0).
Choosing this λ would ensure J̃θ̂(Y) is positive definite, has the same degree
of non-singularity as the complete information matrix and takes into account
the maximum proportion of missing information.

A.5. The predictive posterior likelihood

The predictive posterior likelihood is

Ly(θ|Y)=
∫
· · ·

∫ J∏

j=1

Lj(Yj |x1j ,· · ·,x4j , θ)Lj(x1j ,· · ·,x4j |Yj , θ)
J∏

j=1

dx1j · · · dx4j

=
∫
· · ·

∫ J∏

j=1

nj∏

i=1

eYij(x·ji+zT
jiβ)

(
1+ex·ji+zT

jiβ
) ·

J∏

j=1

Lj(x1j , · · · ,x4j |Yj , θ)
J∏

j=1

dx1j · · · dx4j .

Under hypothesis H at θ = θ̂(H), Ly(θ|Y) is estimated by L̃y(θ̂(H)|Y)
which is equal to
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1
K

K∑

k=1

J∏

j=1

Lj

(
Yj |x̃1jk(H), · · · , x̃4jk(H), θ̂(H)

)

=
1
K

K∑

k=1

J∏

j=1

nj∏

i=1

eYji(x̃·jk,i(H)+zT
jiβ̂(H))

1 + ex̃·jk,i(H)+zT
jiβ̂(H)

where x̃•jk(H) = (x̃·jk,1(H), · · · , x̃·jk,nj (H))T =
∑4

g=1 x̃gjk(H); and
{x̃gjk(H), j = 1, · · · , J ; g = 1, · · · , 4} is generated from the conditional
distribution

∏J
j=1 Lj(x1j , · · · ,x4j |Yj , θ̂(H)) given by (9) (k = 1, · · · ,K).
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