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Abstract

In modelling a measurement experiment some singularities can
occur even if the experiment is quite standard and simple. Such
an experiment is described in the paper as a motivation example.
It is presented in the papar how to solve these situations under
special restrictions on model parameters. The estimability of model
parameters is studied and unbiased estimators are given in
explicit forms.
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Motivation

Let a railway arc be under reconstruction. For the reconstruction it is nec-
essary to know the radius of the arc. Since usually the center of the arc is
unknown, the radius cannot be directly observed. An experiment for the
determination of the radius can be done, e.g., in the following way. Firstly,
points Xi, i = 1, . . . , 4, are chosen elsewhere on the arc. Then other points
Z1, Z2, Z3 are chosen around the arc such that all distances ZiXj and ZiZk,
i, k = 1, 2, 3, i 6= k, j = 1, . . . , 4, can be observed. Finally, points Xi, Zj are
put into proper coordinates system (the map), see Figure 1. For the sake
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of simplicity, let each distance be measured just once with the accuracy σ.
The problem is to determine the radius and coordinates of the center of the
arc subject to coordinates of points Z1, Z2, Z3, if it is possible.

1. Introduction

Let a linear regression model be under consideration. There are situations
when the mean value parameter must satisfy some linear restrictions. Here
two typical situations can occur. Either the restrictions involve components
of the mean value parameter only (the type I), or they involve other unknown
parameters (the type II).

Generally, no assumptions on the rank of design and covariance matrices
in a linear regression model or of matrices in restrictions are given. In such
cases, some linear functions of the mean value parameter can be unbiasedly
estimated only. Which functions are unbiasedly estimable and how they can
be estimated in the universal model without restrictions or with restrictions
of the type I has been studied, e.g., in [1, 2, 4].

The aim of this paper is to find the class of all unbiasedly estimable
functions and to determine explicit expressions of the best linear unbiased
estimators of these functions in the universal linear model with restrictions
of the type II.

2. Notations and auxiliary statements

Let A be an m × n matrix. Let M(A) = {Au : u ∈ Rn} ⊂ Rm and
Ker(A) = {u : u ∈ Rn, Au = 0} ⊂ Rn denote the column space
and the null space of the matrix A, respectively. Let W be an m × m
symmetric positive semidefinite matrix such that M(A) ⊂ M(W). Then
PW

A = A(A′WA)−A′W denotes a projector on M(A) in the W-seminorm.
The symbol MW

A means I−PW
A . If W = I (identity matrix), symbols PA and

MA are used. The W-seminorm of x, x ∈ Rm, is given by ‖x‖W =
√

x′Wx.
Symbols A− and A+ mean the g-inverse and the Moore-Penrose inverse of
the matrix A, respectively.

Let N be an n×n symmetric positive semidefinite matrix. The symbol
A−

m(N) denotes the minimum N-seminorm g-inverse of the matrix A, i.e.,
the matrix A−

m(N) satisfies equations

(1) AA−
m(N)A = A, NA−

m(N)A = A′
(
A−

m(N)

)′
N.
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One of representations of the matrix A−
m(N) is

A−
m(N) =





N−A′(AN−A′)− if M(A′) ⊂M(N),

(N + A′A)−A′[A(N + A′A)−A′]− otherwise.

For more detail cf. [4].

3. Universal model with restrictions

Let the vector parameter β consist of two parts, i.e., β = (β′1, β
′
2)
′. Let the

part β1 be indirectly measured only, i.e., we have a linear regression model
Y ∼n (Xβ1,Σ). In addition, let auxiliary information on the vector of
regression coefficients β1 and another unknown vector β2 be given. Hence,
in this situation the parametric space is not the whole Euclidean space but
its subset only.

The universal linear model with restrictions is considered in the form

(2) Y ∼n

(
Xβ1,Σ

)
, Bβ1 + Cβ2 + b = 0,

where Y is an n-dimensional random vector, Xβ1 is the mean value of Y and
Σ its covariance matrix. X, B and C are given matrices with the dimension
n × k1, q × k1 and q × k2, respectively and Σ is a given n × n symmetric
positive semidefinite matrix. Since no assumption on ranks of matrices B
and C is considered it must be assumed that a given q-dimensional vector
b satisfies b ∈M(B,C).

The model (2) can be written also in the form

(
Y

−b

)
∼n+q

[(
X, 0

B, C

)(
β1

β2

)
,

(
Σ, 0

0, 0

)]
,

(
β1

β2

)
∈ V =

{(
u

v

)
: u ∈ Rk1 , v ∈ Rk2 , b + Bu + Cv = 0

}
.

(3)
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The notation

Fβ =

(
X, 0

B, C

)(
β1

β2

)

will be used in what follows.
Another form of the model (2) can be obtained as follows. A general

solution of the equation b + Bβ1 + Cβ2 = 0 is

β1 = β1,0 + KBγ,

β2 = β2,0 + KCγ, γ ∈ Rk1+k2−rank(B,C),
(4)

where (β′1,0, β
′
2,0)

′ is a partial solution of this equation and KB and KC

are matrices of the type k1 × [k1 + k2 − rank(B,C)] and k2 × [k1 + k2 −
rank(B,C)], respectively, with the property Ker(B,C) = M

(
KB
KC

)
. Thus

the reparametrized version of the model (2) is

(5) Y −Xβ1,0 ∼n (XKBγ,Σ), γ ∈ Rk1+k2−rank(B,C)

and the original parameter β is given by (4). Note, that the model (5) is
one without restrictions.

The linear manifold V of admissible values of parameter β is given for
both, observable and not observable, parts of β simultaneously. How to
determine linear manifolds for one part of β independently of the other one
is given in the following lemma.

Lemma 3.1. Let us denote

V1 =

{
β1 :

(
β1

β2

)
∈ V

}
,

V2 =

{
β2 :

(
β1

β2

)
∈ V

}
.

Then

V1 = {u : MCb + MCBu = 0} ,

V2 = {v : MBb + MBCv = 0} .
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Proof. The inclusion V1 ⊂ {u : MCb + MCBu = 0} is obvious. Let

β1 ∈ {u : MCb + MCBu = 0} ,

i.e.,

b + Bβ1 ∈M(C) ⇔ ∃β2 ∈ Rk2 : b + Bβ1 + Cβ2 = 0

and thus the opposite inclusion in the first statement is proved. The second
statement can be proved similarly.

4. Unbiasedly estimable functions

Lemma 4.1. In the universal model (2) a linear function

h(β1, β2) = h′1β1 + h′2β2, (β′1,β
′
2)
′ ∈ V, h1 ∈ Rk1 , h2 ∈ Rk2 ,

is linearly unbiasedly estimable if and only if

h =

(
h1

h2

)
∈M

(
X′, B′

0, C′

)
.

Proof. The function h(β1, β2) is linearly unbiasedly estimable if and only
if there exists a statistic L′1Y + L′2(−b), L1 ∈ Rn, L2 ∈ Rq, with properties

E
[
L′1Y + L′2(−b)

]
= h′1β1 + h′2β2 ∀β = (β′1, β

′
2)
′ ∈ V,

i.e.,
L′1Xβ1 + L′2(−b) = h′1β1 + h′2β2 ∀β = (β′1,β

′
2)
′ ∈ V,

what is equivalent to

∃k ∈ Rq : L′1X− h′1 = k′B, −h′2 = k′C, L′2 = −k′

and thus (
h1

h2

)
∈M

(
X′, B′

0, C′

)
.
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Corollary 4.2. In the universal model (2) the vector function
(

X, 0

B, C

) (
β1

β2

)
,

(
β1

β2

)
∈ V

is always linearly unbiasedly estimable.

Lemma 4.3. In the universal model (2) a linear function h(β1, β2) = h′1β1,
β1 ∈ V1, h1 ∈ Rk1, is linearly unbiasedly estimable if and only if

h1 ∈M
(
X′,B′MC

)
.

Proof. With respect to Lemma 4.1 a function h(β1,β2) = h′1β1, β1 ∈ V1,
h1 ∈ Rk1 , is linearly unbiasedly estimable if and only if

(
h1

0

)
∈M

(
X′, B′

0, C′

)
.

It means

∃k1 ∈ Rk1 , ∃k2 ∈ Rq : h1 = X′k1 + B′k2, 0 = C′k2,

what is equivalent to

k2 = MCu, h1 = X′k1 + B′MCu, u ∈ Rq, arbitrary.

Hence h1 ∈M (X′,B′MC) .

Lemma 4.4. In the universal model (2) a linear function h(β1, β2) = h′2β2,
β2 ∈ V2, h2 ∈ Rk2, is linearly unbiasedly estimable if and only if

h2 ∈M
(
C′MBMX′

)
.

Proof. A function h(β1,β2) = h′2β2, β2 ∈ V2, h2 ∈ Rk2 , is linearly
unbiasedly estimable if and only if

(
0

h2

)
∈M

(
X′, B′

0, C′

)

⇔ ∃k1 ∈ Rk1 , ∃k2 ∈ Rq : 0 = X′k1 + B′k2, h2 = C′k2.
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The first condition 0 = X′k1 + B′k2 is equivalent to
(

k1

k2

)
∈M

(
M(

X
B

)
)

= M

 I−X(X′X + B′B)−X′, −X(X′X + B′B)−B′

−B(X′X + B′B)−X′, I−B(X′X + B′B)−B′


 .

Since

MBMX′ = I−BMX′(MX′B′BMX′)+MX′B′

= I−B
[
MX′(X′X + B′B)MX′

]+
B′

= I−B(X′X + B′B)−B′

+ B(X′X + B′B)−X′[X(X′X + B′B)−X′]−X(X′X + B′B)−B′,

using relations

M(A′) ⊂M(W), W p.s.d. ⇒ M(A) = M(AWA′)

and
M(A1,A2) = M(A1 + A2) for A1,A2 p.s.d.

we obtain

M (
[−B(X′X + B′B)−X′, I−B(X′X + B′B)−B′]

)
= M

(
MBMX′

)
.

Analogously

M (
[I−X(X′X + B′B)−X′,−X(X′X + B′B)−B′]

)
= M

(
MXMB′

)
.

Thus

X′k1 + B′k2 = 0 ⇔ k1 ∈M
(
MXMB′

)
, k2 ∈M

(
MBMX′

)
.

Now, if the second condition h2 = C′k2 is also taken into account, we obtain
the statement.
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5. Explicit expression of unbiased estimators

Lemma 5.1. One version of the minimum
(
Σ, 0
0, 0

)
- seminorm g-inverse of

the matrix
(

X′, B′
0, C′

)
is given by the relation




(
X′, B′

0, C′

)−

m
(

Σ, 0
0, 0

)




′

=

(
A11, A12

A21, A22

)
,

where

A11 = MB′MC

[(
MB′MC

X′)−
m(Σ)

]′
,

A12 = W+B′ (MCBW+B′MC

)+
,

A21 = −
[(

C′)−
m(BW+B′)

]′
BW+X′ (Σ + XMB′MC

X′)+
,

A22 =
[(

C′)−
m(BW+B′)

]′
,

W = X′ (Σ + XMB′MC
X′)+ X + B′MCB.

Proof. It is necessary to verify conditions (1), i.e., to prove equalities

(i) X′ = X′ (MB′MC
X′)−

m(Σ)
MB′MC

X′

+B′ (MCBW+B′MC

)+ BW+X′,

(ii) B′ = X′ (MB′MC
X′)−

m(Σ)
MB′MC

B′

+B′ (MCBW+B′MC

)+ BW+B′

−X′ (Σ + XMB′MC
X′)+ XW+B′ (C′)−

m(BW+B′) C
′

+B′ (C′)−
m(BW+B′) C

′,
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(iii) 0 = C′ (MCBW+B′MC

)+ BW+X′,

(iv) C′ = C′ (MCBW+B′MC

)+ BW+B′ + C′ (C′)−
m(BW+B′) C

′,

(v) Σ
(
MB′MC

X′)−
m(Σ)

MB′MC
X′ = XMB′MC

[(
MB′MC

X′)−
m(Σ)

]′
Σ,

(vi) Σ
(
MB′MC

X′)−
m(Σ)

MB′MC
B′

−Σ
(
Σ + XMB′MC

X′)+ XW+B′ (C′)−
m(BW+B′) C

′ = 0.

The expression X′ (MB′MC
X′)−m(Σ) MB′MC

X′ can be rewritten in the form

X′ (Σ + XMB′MC
X′)+ XMB′MC

×
[
MB′MC

X′ (Σ + XMB′MC
X′)+ XMB′MC

]+
MB′MC

X′

= W
[
W+ −W+B′MC

(
MCBW+B′MC

)+ MCBW+
]
X′

= X′ −B′ (MCBW+B′MC

)+ BW+X′,

since

B′MCBMB′MC
= 0, WW+X′ = X′, WW+B′MC = B′MC

and
(
MCBW+B′MC

)+ = MC

(
MCBW+B′MC

)+
.

Hence the equality (i) is proved.
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Let V = BW+B′ + CC′. As far as the equality (ii) is concerned, the
right-hand side equals to

W
[
W+ −W+B′MC

(
MCBW+B′MC

)+ MCBW+
]
B′

+B′ (MCBW+B′MC

)+ BW+B′

− (
W −B′MCB

)
W+B′V+C

(
C′V+C

)+ C′

+B′V+C
(
C′V+C

)+ C′

= WW+B′ +
(
I−WW+

)
B′V+C

(
C′V+C

)+ C′

+B′MCVV+C
(
C′V+C

)+ C′

= WW+B′ +
(
I−WW+

)
B′ (MC + PC)V+C

(
C′V+C

)+ C′

= WW+B′ (MC + PC) +
(
I−WW+

)
B′PC

= WW+B′MC + B′PC = B′ (MC + PC) = B′,

since

VV+C = C, PCV+C
(
C′V+C

)+ C′ = PC .

Equalities (iii) and (iv) are obvious since

C′ (MCBW+B′MC

)+ = C′MC

(
MCBW+B′MC

)+ = 0.

The equality (v) follows from the definition of the minimum Σ-seminorm
g-inverse of the matrix MB′MC

X′.
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Finally, the left-hand side in the equality (vi) equals to

Σ
(
Σ + XMB′MC

X′)+ X

×
({

W+ −W+B′
[
V+ −V+C

(
C′V+C

)+ C′V+
]
BW+

}
B′

−W+B′V+C
(
C′V+C

)+ C′
)

= Σ
(
Σ + XMB′MC

X′)+ X

×
[
W+B′ −W+B′V+

(
V −CC′)

+W+B′V+C
(
C′V+C

)+ C′ {V+
(
V −CC′)− I

} ]
= 0.

Thus the proof is finished. (See also [2].)

Theorem 5.2. In the universal model (2) the BLUE (best linear unbiased
estimator) of a vector function Xβ1, β1 ∈ V1, is

X̂β1 = XMB′MC

[(
MB′MC

X′)−
m(Σ)

]′
Y

−XW+B′ (MCBW+B′MC

)+
b

with the covariance matrix

Var
(
X̂β1

)
= X

[
MB′MC

X′ (Σ + XMB′MC
X′)+ XMB′MC

]−
X′

−XMB′MC
X′.

Proof. Let the universal model be considered in the form (3). Then the
BLUE of the function

Fβ =

(
X, 0

B, C

)(
β1

β2

)
, β =

(
β1

β2

)
∈ V,

i.e., of the mean value in the model under consideration, is (cf. [1], p. 86).
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F̂β =

(
X, 0

B, C

)


(
X′, B′

0, C′

)−

m
(

Σ, 0
0, 0

)




′(
Y

−b

)
.

Hence the expression for X̂β1 follows from Lemma 5.1 and the relation
X̂β1 = (I,0)F̂β. The covariance matrix can be derived straightforwardly
by using the following equalities

(
MB′MC

X′)−
m(Σ)

=
(
Σ + XMB′MC

X′)+ XMB′MC

×
[
MB′MC

X′ (Σ + XMB′MC
X′)+ XMB′MC

]−
,

XMB′MC

[
MB′MC

X′ (Σ + XMB′MC
X′)+ XMB′MC

]−

×MB′MC
X′ (Σ + XMB′MC

X′)+ XMB′MC
= XMB′MC

,

MB′MC

[
MB′MC

X′ (Σ + XMB′MC
X′)+ XMB′MC

]−

=
[
MB′MC

X′ (Σ + XMB′MC
X′)+ XMB′MC

]−
.

Theorem 5.3. In the universal model (2) the class of BLUEs of all unbias-
edly estimable linear functions of the parameter β1, β1 ∈ V1, is characterized
by the statistic

(6)




XMB′MC

[
(MB′MC

X′)−m(Σ)

]′
Y −XW+B′ (MCBW+B′MC)+ b

−MCb


 ,

i.e., any linear transformation of the vector (6) is the BLUE of the mean
value of this linear transformation.
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Proof. With respect to Lemma 4.3 a function h(β1,β2) = h′1β1, β1 ∈ V1,
is unbiasedly estimable if and only if h′1 = u′X+v′MCB. Using Lemma 5.1,
the BLUE of h′1β1, β1 ∈ V1, is

ĥ′1β1 =
(
u′, v′MC

)
F̂β =

(
u′X + v′MCB,0

)
(

A11, A12

A21, A22

)(
Y

−b

)

=
(
u′, v′

)

×




XMB′MC

[
(MB′MC

X′)−m(Σ)

]′
Y −XW+B′ (MCBW+B′MC)+ b

MCB
[
(MB′MC

X′)−m(Σ)

]′
Y −MCBW+B′ (MCBW+B′MC)+ b


 .

Since

MCB
[
MB′MC

X′ (Σ + XMB′MC
X′)+ XMB′MC

]−

= MCBMB′MC

[
MB′MC

X′ (Σ + XMB′MC
X′)+ XMB′MC

]−
= 0,

it holds that
MCB

[(
MB′MC

X′)−
m(Σ)

]′
Y = 0.

Further, from the relation

Bβ1 + Cβ2 + b = 0 ⇒ MCb = −MCBβ1

it follows that

MCBW+B′ (MCBW+B′MC

)+
b

= MCBW+B′MC

(
MCBW+B′MC

)+ MCb

= −MCBW+B′MC

(
MCBW+B′MC

)+ MCBβ1

= −MCBβ1 = MCb

and the proof is finished.
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Theorem 5.4. In the universal model (2) the BLUE of the unbiasedly
estimable function h′2β2, β2 ∈ V2, h2 ∈M(C′MBMX′ ), is

ĥ′2β2 = −h′2
[(

C′)−
m(BW+B′)

]′ [
BW+X′ (Σ + XMB′MC

X′)+
Y + b

]

with the variance

Var
(
ĥ′2β2

)
= h′2

[(
C′)−

m(BW+B′)

]′
BW+X′ (Σ + XMB′MC

X′)+ Σ

× (
Σ + XMB′MC

X′)+ XW+B′ (C′)−
m(BW+B′) h2.

Proof. Let h2 ∈ M(C′MBMX′ ), i.e., ∃v ∈ Rq : h′2 = v′MBMX′C. Using
Lemma 5.1, the BLUE of h′2β2, β2 ∈ V2, is

ĥ′2β2 =
(
u′,v′MBMX′

)
F̂β

=
(
u′X + v′MBMX′B, v′MBMX′

)
(

A11, A12

A21, A22

)(
Y

−b

)

= h′2A21Y − h′2A22b

= −h′2
[(

C′)−
m(BW+B′)

]′ [
BW+X′ (Σ + XMB′MC

X′)+
Y + b

]
,

since vectors u ∈ Rk1 and v ∈ Rq are chosen such that

u′X + v′MBMX′B = 0′

(cf. proof of Lemma 4.4).
The rest of the proof is obvious.
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Theorem 5.5. In the universal model (2) the class of BLUEs of all unbias-
edly estimable linear functions of the parameter β2, β2 ∈ V2, is characterized
by the statistic

(7) −MBMX′C
[(

C′)−
m(BW+B′)

]′ [
BW+X′ (Σ + XMB′MC

X′)+
Y + b

]
,

i.e., any linear transformation of the vector (7) is the BLUE of its mean
value.

Proof. It is an obvious consequence of Theorem 5.4.

6. Numerical demonstration

Let the following notation be used in the motivation example.

• y = (y1, . . . , y15)′ . . . a vector of observed distances ZiXj , ZiZk,
i, k = 1, 2, 3, i 6= k, j = 1, . . . , 4,

• δ = (δ1, . . . , δ8)′ . . . a vector of unknown coordinates of points
Xi = [δ2i−1, δ2i]′, i = 1, . . . , 4,

• γ = (γ1, . . . , γ6)′ . . . a vector of unknown coordinates of points
Zi = [γ2i−1, γ2i]′, i = 1, 2, 3,

• s = (s1, s2)′ . . . a vector of unknown coordinates of the center
S = [s1, s2]′,

• r . . . the unknown radius

The mentioned process of measurement can be modelled by

Y ∼15

(
f(δ, γ), σ2I

)
,

where, e.g.,
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f1(δ, γ) =
√

(γ1 − δ1)2 + (γ2 − δ2)2,

with restrictions (points Xi, i = 1, . . . , 4, must lie on the arc)

g(δ, γ, s, r) = 0,

where

gi(δ, γ, s, r) = (δ2i−1 − s1)2 + (δ2i − s2)2 − r2, i = 1, . . . , 4.

The linear version of the model can be written in the form

Y − f
(
δ(0),γ(0)

)
∼15

(
X∆β1, σ

2I
)
, B∆β1 + C∆β2 = 0,

∆β1 = β1 − β
(0)
1 , ∆β2 = β2 − β

(0)
2 ,

β1 = (δ′, γ ′)′, β2 = (s1, s2, r)′,

where β
(0)
1 and β

(0)
2 are approximate values of vectors β1 and β2, respec-

tively, and

X =
∂f(u)
∂u′

∣∣∣
u=β

(0)
1

, B =
∂g(u, β

(0)
2 )

∂u′
∣∣∣
u=β

(0)
1

, C =
∂g(β(0)

1 ,v)
∂v′

∣∣∣
v=β

(0)
2

.

It should be mentioned that approximate values β
(0)
1 and β

(0)
2 must be chosen

with sufficient accuracy in such a way that restrictions g(δ, g, s, r) = 0
are satisfied (in more detail cf. [3]). In practice, it is suitable to choose
approximate coordinates of all points Z and three from four points X in
the first step, e.g., from a map with a sufficiently large scale. Then one
can determine the approximate value of the radius r and the center S of the
circle on which points X must lie. Finally, for the obtained circle coordinates
of the last point X can be chosen. The graphical record of measurement
results enables us to do it easily.

For the sake of simplicity, approximate values have been chosen as true
values (in metres):
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Z
(0)
1 =

(
100

400

)
, Z

(0)
2 =

(
800

650

)
, Z

(0)
3 =

(
250

1100

)
,

X
(0)
1 =

(
621.55983

896.57523

)
, X

(0)
2 =

(
392.18187

845.72336

)
,

X
(0)
3 =

(
250.00000

779.42286

)
, X

(0)
4 =

(
121.49115

689.44000

)
,

S(0) =

(
700

0

)
, r(0) = 900.

In this case, terms in the linearized model are as follows:

f
(
δ(0),γ(0)

)

= [ 720.14694, 532.95362, 407.99719, 290.23677, 304.36859, 452.35303,

565.02237, 679.65416, 423.60164, 291.32850, 320.57714, 430.20232,

743.30344, 715.89105, 710.63352 ]′,

the design matrix X = (X1,X2), where

X1 =




19.43540, 18.50438, 0, 0, 0, 0, 0

0, 0, 12.65635, 19.30726, 0, 0, 0

0, 0, 0, 0, 7.42613, 18.78430, 0

0, 0, 0, 0, 0, 0, 1.26149

−10.22805, 14.13349, 0, 0, 0, 0, 0

0, 0, −19.17466, 9.20246, 0, 0, 0

0, 0, 0, 0, −23.13822, 5.44475, 0

0, 0, 0, 0, 0, 0, −26.02625

18.05302, −9.88382, 0, 0, 0, 0, 0

0, 0, 8.33015, −14.89755, 0, 0, 0

0, 0, 0, 0, 0, −17.90467, 0

0, 0, 0, 0, 0, 0, −6.19579

0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0




,
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X2 =




0, −19.43540, −18.50438, 0, 0, 0, 0

0, −12.65635, −19.30726, 0, 0, 0, 0

0, −7.42613, −18.78430, 0, 0, 0, 0

16.98957, −1.26149, −16.98957, 0, 0, 0, 0

0, 0, 0, 10.22805, −14.13349, 0, 0

0, 0, 0, 19.17466, −9.20246, 0, 0

0, 0, 0, 23.13822, −5.44475, 0, 0

1.51284, 0, 0, 26.02625, −1.512840, 0, 0

0, 0, 0, 0, 0, −18.05302, 9.88382

0, 0, 0, 0, 0, −8.33015, 14.89755

0, 0, 0, 0, 0, 0, 17.90467

−19.79431, 0, 0, 0, 0, 6.19579, 19.79431

0, −25.67527, −9.16974, 25.67527, 9.16974, 0, 0

0, −5.60619, −26.16222, 0, 0, 5.60619, 26.16222

0, 0, 0, 20.63193, −16.88067, −20.63193, 16.88067




.

Matrices in restrictions are C and

B =


 B11, 02×2, 02×6

02×2, B22, 02×6


 ,

where

B11 =


 −156.88034, 1793.15046, 0, 0

0, 0, −615.63626, 1691.44672


 ,

B22 =


 −900, 1558.84573, 0, 0

0, 0, −1157.01770, 1378.88000




and

C =




156.88034, −1793.15046, −1800

615.63626, −1691.44672, −1800

900.00000, −1558.84573, −1800

1157.01770, −1378.88000, −1800




.
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At first, the problem of estimability will be discussed. The matrix B is of
full row rank and C is of full column rank, however the design matrix X
is singular, where rank(X) = 11. According to Lemma 4.4, the radius r
and coordinates of the center S are estimable since the matrix C′MBMX′
is of full row rank, i.e., M (

C′MBMX′
)

= R3. According to Lemma 4.3,
individual coordinates of points X and Z are not estimable, since the matrix
(X′,B′MC) is singular (rank (X′,B′MC) = 13). Only these functions h′β1

of coordinates of points X and Z are estimable for which it holds that
h ∈M (X′,B′MC).
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Figure 1. The plan of the experiment

Let the accuracy of measurement be σ = 0.01 m. Let the simulated data of
observed distances (in metres) be
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y = [ 720.14261, 532.93696, 407.99845, 290.23965, 304.35712, 452.36493,

565.03426, 679.65378, 423.60491, 291.33025, 320.57527, 430.20958,

743.29755, 715.91289, 710.63216 ]′.

The BLUE of the parameter ∆β2 = (∆s1, ∆s2, ∆r)′ is (cf. Theorem 5.4)

∆̂r = −0.00772,

(
∆̂s1

∆̂s2

)
=

(
−0.00399

0.00674

)
,

i.e., the estimated radius r and coordinates of the center S are

r̂ = 899.99228, Ŝ =

(
ŝ1

ŝ2

)
=

(
699.99601

0.00674

)
.

The variance of the estimator of the radius is

Var(r̂) = 8.42069 · 10−5

and the covariance matrix of the center is

Var

(
ŝ1

ŝ2

)
=

(
1.24844 · 10−5, −3.05357 · 10−5

−3.05357 · 10−5, 7.50044 · 10−5

)
.

Thus standard errors are

√
Var(r̂) = 0.00918,

√
Var(ŝ1) = 0.00353,

√
Var(ŝ2) = 0.00866.

This example showed that a problem of engineering practice can lead to a
singular regression model. Although the problem is standard, its solution
needs a special approach.
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Structures, Veda, Bratislava 1995.
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