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Abstract

Adaptive designs are used in phase III clinical trials for skewing the
allocation pattern towards the better treatments. We use optimum de-
sign theory to provide a skewed biased-coin procedure for sequential
designs with continuous responses. The skewed designs are used to
provide adaptive designs, the performance of which is studied numeri-
cally for designs with three treatments. Important properties are loss
and the proportion of allocation to inferior treatments. Regularisation
to provide consistent parameter estimates greatly improves both these
properties.
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1. Introduction

Patients arrive sequentially, perhaps for a phase III clinical trial, and are
to be allocated one of t treatments. Adaptive designs skew the allocation
proportion to the eventually best treatment by using earlier responses to de-
termine the next allocation. For efficient estimation of the treatment effect
the allocation needs to be approximately balanced over the prognostic fac-
tors and covariates of the individual patients. There needs also to be some
randomization in the allocation. The paper uses optimum design theory to
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provide balance, augmented by a biased coin (Atkinson [2]) for randomiza-
tion. We describe optimum designs that give a skewed allocation and show
how they can be used to provide adaptive designs that favour the best treat-
ment. These skewed designs will also be of importance in their own right.
For example, in the comparison of a treatment with a control, it might be
desired to give a specified majority of patients the new treatment.

There is an extensive literature on randomization and adaptive designs
in clinical trials. Recent book length treatments include Matthews [13] and
Rosenberger and Lachin [14]. Virtually all of the reported work on adaptive
designs is for binary responses in the absence of prognostic factors, with
designs generated from urn models. In contrast we use optimum design the-
ory for regression models with responses that are either normal or can be
made so by transformation. Our results also cover generalized linear mod-
els where the treatment effects are sufficiently small that the effect on the
design of the iterative weights used in parameter estimation can be ignored
(Cox [11]).

The combination of optimum design theory for linear models and biased-
coin designs (Atkinson [2]) provides expressions for the probabilities of al-
location of the treatments; the resulting randomization depends on the al-
location history and the covariates. The lack of balance from restricted
randomization results in increased variance of parameter estimates that can
be expressed as a “loss”, that is the number of patients on whom information
is not available compared with the balanced design. Comparisons of several
rules for non-adaptive biased-coin designs are in Atkinson [4]. Adaptive de-
signs were combined with biased-coin designs by Atkinson and Biswas [7]
whose development was mostly for the comparison of two treatments. Here
we extend the theory to any number of treatments and give examples of
designs when t = 3. Our objective is to present adaptive designs for which
we can quantify the tradeoff between efficiency of estimation of treatment
differences, partially randomized allocation and reduction of the number of
patients receiving inferior treatments.

The model and parameter estimates are presented in Section 2, together
with a method for skewing treatment allocations. Section 3 describes a va-
riety of biased-coin rules and compares the average losses from the resulting
skewed designs. Adaptive designs are introduced and their average proper-
ties explored in Section 4. In the early stages of the trial adaptive designs
can diverge far from the optimum due to poor parameter estimates. Section
5 describes a regularisation that leads to improved average properties for
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the designs. The distribution of loss and of the proportions of treatments
allocated for individual clinical trials are the subject of Section 6. Sec-
tion 7 concludes with some comments on the properties of adaptive designs.
Mathematical results on optimum design are in an appendix. Although
the theory is for any number of treatments, the numerical examples are for
exactly three.

2. Models, variances and loss

2.1. Models
In general let there be t treatments, one of which may be the control. The
vector of unknown treatment effects is α and the patient presents with a
vector xi of covariates. The results of the trial will be analysed using the
regression model

E(yi) = gT
i ω = hT

i α + zT
i θ.(1)

Here hi is a vector of t indicator variables, the one non-zero element indi-
cating which treatment the patient received. One linear combination of the
α is of interest and the (q − t + 1) × 1 vector zi contains those covariates,
including any powers or interactions of the elements of xi, which will be
used to adjust the responses when estimating α.

2.2. Skewed allocations
We consider designs to estimate particular linear combinations of the
elements of ω. We write the linear combination as

lT ω = lT1 α + lT2 θ.(2)

We are not interested in designing to estimate θ, so the q − t + 1 elements
of θ are nuisance parameters and all elements of l2 are zero.

We initially assume that the elements of l1 are known. We then use
adaptive designs in which they are estimated from the observations already
to hand. To develop adaptive designs, Atkinson and Biswas [7] introduced
a procedure that yielded a skewed allocation in which a proportion p of
the patients received treatment 1. They designed to estimate the linear
combination

lT1 α = pα1 − (1− p)α2 (0 ≤ p ≤ 1),(3)
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with minimum variance, so that l1 = {p − (1 − p)}T . Simulations similar
to those for unskewed designs in Atkinson [4] show that use of biased-coin
designs to estimate this linear combination in the presence of covariates
produces the desired skewed allocation for a fixed value of p. If r1n patients
receive treatment 1 and r2n treatment 2, r1 converges to p and r2 to 1− p.

We now extend this procedure to designs for t treatments by use of the
linear combination

lT1 α = ±p1α1 ∓ . . .± ptαt,(4)

with the proportions pj , j = 1, . . . , t, such that 0 < pj < 1 and
∑

pj = 1.
In the absence of covariates the variance of lT1 α̂ is minimised when the
proportion of patients receiving treatment j is rj = pj , which is the desired
allocation. Our simulations show how the rate at which rj converges to pj

depends upon the design criterion.
We are interested in only one linear combination of the α. There are

therefore a further t − 1 linear combinations spanning the space of the α
that are not of interest. Together with the q − t + 1 elements of θ there are
therefore in all q nuisance parameters. As we shall see, the properties of the
designs depend on q.

2.3. Loss
With more than two treatments interest may be in estimation of two or
more linear combinations of the treatment parameters. Expressions for the
variance of a general set A of linear combinations of the estimated treatment
effects is given by Atkinson [2] and [4]. The special case for a single linear
combination is in (A4).

Let the estimate of the linear combination from the optimum skewed
design with rj = pj be lT α̂∗. Then, in the absence of covariates,

var
{
lT α̂∗

}
= σ2/n,(5)

which is also the variance for an optimum skewed design with balance over
the covariates.

For other designs we find the variance from (A4) with the linear combi-
nation given by (A5). We can compare these designs using either the ratio
of variances, that is the efficiency En, or we can use the loss (Burman [10]),
calculated by Atkinson [4] for eleven rules for unskewed treatment allocation.
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From (A4) the efficiency of any design is

En = 1/
{
nlT (GT

nGn)−1l
}

.(6)

The loss Ln is defined by writing the variance (A4) as

var
{
lT α̂

}
=

σ2

n− Ln
,(7)

so that
Ln = n(1−En).(8)

With a random element in treatment allocation, the loss Ln is a random
variable, depending upon the particular trial and pattern of covariates. Let
E(Ln) = Ln. The results of Atkinson [4] show that, for random allocation
of two treatments in the unskewed case, Ln → q, the number of covariates.
For the randomised c-optimum rule (A9), the asymptotic value L∞ when
t = 2 is q/5 and for non-random allocation zero. The loss can be interpreted
as the number of patients on whom information is lost due to the lack of
optimality of the design.

One advantage of loss as a measure of design performance is that it
approaches the informative asymptotic value relatively quickly. For the
schemes considered in Atkinson [4] interpretation of the values of loss using
(8) shows that the efficiency of all designs asymptotically tends to one: loss
is a more sensitive measure of design performance.

3. Sequential designs for skewed allocation

3.1. Optimum designs and biased-coin designs
The variance of the linear combination of estimated treatment effects in (A4)
does not depend upon any unknown parameters. Given the vector zn+1 of
covariate values for the n+1st patient, we can calculate the decrease in vari-
ance due to allocating each of the t treatments singly to this patient. The
sequential construction of optimum designs described in Appendix A.3 allo-
cates that treatment for which the decrease in variance is greatest. When,
as here, the variance is that of a linear combination of parameter estimates,
the design criterion is that of c-optimality.

A disadvantage of sequentially constructed optimum designs is that it
possible to guess correctly the treatment that each patient will receive.
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Atkinson [4] compares several rules for the allocation of two treatments in
which biased-coin designs are used. These allocate the treatment indicated
by the sequential construction of designs with a probability greater than 1/t.
The rules were compared for loss and allocation bias, related to the proba-
bility of correctly guessing the allocation. We use four of these rules here,
extending them, where necessary, to the allocation of several treatments.

3.2. Classical allocation rules
We denote by π(j|xn+1) the conditional probability that the (n+1)st patient,
with prognostic factors xn+1, receives treatment j. In some cases these
probabilities depend upon the ordering of the treatments by the variances
dc(j, n, zn+1). We use π([j]|xn+1) to represent the probability of allocating
the treatment with the jth largest value of the variance.

D: Deterministic (sequential design construction)

In order to achieve balance that treatment should be allocated for which
dc(j, n, zn+1), j = (1, . . . , t) is largest

πD([1]|xn+1) = 1.

Asymptotically, for any reasonable distribution over time of prognostic fac-
tors, the design will be balanced over the factors, when allowance is made
for the skewing induced by the linear combinations l, and there will be no
loss: L∞ = 0.

R: Completely randomized

For skewed designs
πR(j|xn+1) = pj

and L∞ = q, the value for unskewed designs.
These two rules represent the extremes of rules which aim for skewing

and balance over both the short and long term. The losses of the other rules
considered here are bounded by these values.

A: DA-optimality

We consider only the special case when interest is in one linear combination,
so the DA-optimum criterion of Atkinson [2] reduces to c-optimality. From
(A9)
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πA(j|xn+1) =
pjdc(j, n, xn+1)

t∑

k=1

pkdc(k, n, xn+1)

.(9)

For two treatments Burman [10] shows that L∞ = q/5.

E: Efron’s biased-coin

In Efron’s original biased-coin design (Efron [12]), with two treatments and
no prognostic factors, the probability of allocation of the under-represented
treatment is πE([1]|xn+1) = b[1] = 2/3. As for the deterministic rule,
L∞ = 0.

When there are covariates the allocation depends upon the ordering of
the treatments by the variances dc(j, n, zn+1). Let the rank of treatment j
by this ordering be R(j). For unskewed allocations we can take

πE(j|xn+1) = bj = 2 {t + 1−R(j)} / {t(t + 1)} ,(10)

when the bj sum to one. For skewed allocation we need to weight the bj by
the skewing proportions pj to obtain

πE(j|xn+1) = bjpj/
t∑

k=1

bkpk.(11)

3.3. Bayesian biased-coin designs
The comparisons of Atkinson [4] for two treatments and unskewed allocation
showed that Bayesian biased-coin designs derived from the general approach
of Ball, Smith, and Verdinelli [8] have good properties in terms of bias and
loss. Balance is forced at the start of the trial but, as n increases, the
allocation becomes increasingly random and so safer from allocation bias.
The extension to skewed allocation, with examples for two treatments, is
given by Atkinson and Biswas [6]. For t treatments the probabilities of
allocation are

πB(j|xn+1) =
pj {1 + dc(j, n, xn+1)}1/γ

t∑

k=1

pk {1 + dc(k, n, xn+1)}1/γ

,(12)

where γ is a parameter, to be chosen by the clinician, that controls the rate
of change of the criterion from balance to randomness. We leave to another
paper the exploration of the properties of these designs.
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3.4. Numerical results for skewed designs
In this section the four non-Bayesian allocation rules are compared for
the linear combination of three treatments with l1 = (0.8 − 0.15 0.05)T .
The proportion of treatments allocated is therefore expected to be 0.8, 0.15
and 0.05, the minus sign in the definition of l serving to avoid the generation
of singular designs. The small value of 0.05 for treatment 3 was deliberately
chosen to exhibit any instabilities that might exist in the procedure for
generating adaptive designs. As we see in Sections 5 and 6 the proportion of
patients allocated to treatment 3 is sensitive to the design criterion. In the
comparisons of this section we find the loss for q = 5 and 10. The results
shown are the averages of 10,000 simulations of 800 patient trials with the
elements of the prognostic factors zi independently normally distributed
with variance one.

The plots of Figure 1 show the losses, as functions of patient number:
the left-hand panel is for q = 5 and the left-hand panel for q = 10. The
losses are similar to those in Figures 4 and 5 of Atkinson [3] which were for
unskewed DA-optimality when two contrasts orthogonal to the treatment
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Figure 1. Designs for l1 = (0.8 − 0.15 0.05)T . Average losses Ln for four allo-
cation rules: A, DA-optimality; D, deterministic; E, Efron’s biased coin
and R, random. Averages of 10,000 simulations: Left-hand panel q = 5;
Right-hand panel q = 10.



Adaptive biased-coin designs for clinical trials with ... 93

mean were of interest. They are also similar to the plots in Atkinson [4] for
unskewed designs for two treatments. The main differences are that we have
extended the simulations to 800 patients and that there is a slight increase
in all losses for the skewed allocation. This arises because, with 16:3:1 ratios
of allocation, the skewed designs are on average slightly less well balanced
than those for unskewed allocation. In both panels the loss for rule R is
close to q and that for D decreases to zero, faster for q = 5 than for q = 10.
The losses for rule E also decrease to zero, becoming less than those for rule
A, which are stable after n = 100. For two treatments the asymptotic losses
for A are q/5. Here 3q/10 seems closer to the value. The numbers for L800

are in Table 1.

Table 1. Average loss L800 for skewed allocations from 10,000 simulations, with
target proportions 0.8, 0.15 and 0.05.

Rule q = 5 q = 10
A 1.39 3.04

D 0.03 0.17

E 0.30 1.26

R 5.01 10.04

There is also some fine structure for the loss for rule D that is particu-
larly evident in the left-hand panel of Figure 1. The slight saw-tooth pattern
arises because, on average, only one in every twenty patients receives treat-
ment 3. In the sequential construction of an optimum design without any
randomness this treatment would be allocated regularly at steps of 20 in n.
Here the randomness introduced by sampling the prognostic factors is not
sufficient to completely destroy this pattern. For the other rules the ran-
domness in the allocation does destroy this pattern arising from balancing
the design.

Rules R and D are the two most extreme in Figure 1. Figure 2 is a
plot for these two rules of the average values of the proportions rj receiv-
ing the three treatments. In both panels the proportions start at 1/3 since
the algorithm initially allocates three patients to each treatment. There-
after the values of r1 and r2 approach 0.8 and 0.15 in a similar manner.
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The difference comes in the plot of the values of r3 which approaches 0.05
more rapidly for rule D than for rule R. This is to be expected since rule D
is forcing the rj to mimic the pj as quickly as possible.
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Figure 2. Designs for l1 = (0.8 − 0.15 0.05)T . Average ratios rj of treatments
allocated for two allocation rules when q = 5. Averages of 10,000 simu-
lations: Left-hand panel rule D; Right-hand panel rule R. In particular
r3 converges more slowly to 0.05 for rule R than it does for rule D.

4. Adaptive designs

4.1. Link function based adaptive design for two treatments
So far we have assumed that the values of the pj are known. For two
treatments Atkinson and Biswas [7] extend the link-function based adaptive
design of Bandyopadhyay and Biswas [9] to provide a design with some
randomness in which p1 and p2 are estimated from the data.

The purpose was to skew allocation towards the better treatment.
Assume that large values of the response y are desired. Let ∆̂ = α̂1 − α̂2.
Then they suggest that the adaptive probability of allocating treatments
should be calculated using the estimate

p̂1 = Φ(∆̂/T ),
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where Φ(x/T ) is the distribution function of a N(0, T 2) random variable
and p̂2 = 1 − p̂1. If ∆̂ is positive, that is if α̂1 > α̂2, then p̂1 is > 0.5.
These estimated values are used in calculating the variance dc(j, n, zn+1)
for the (n + 1)st patient. They then apply the allocation rules of
Subsection 3.2. As it becomes clearer that treatment 1 is superior to treat-
ment 2, the allocation proportion converges to Φ{(α1 − α2)/T} with the
speed of convergence depending on the allocation rule.

4.2. Adaptive design for several treatments
Suppose that after n patients have been treated the estimated treatment
parameters are α̂j . To extend the adaptive design criterion to more than
two treatments we need to preserve the invariance of the procedure to the
overall treatment mean. Accordingly let

ᾱ =
t∑

j=1

α̂j/t and ∆̂j = α̂j − ᾱ.

As before we use the cumulative normal distribution to obtain estimated
coefficients p̂j by setting

p′j = Φ(∆̂j/T ) and p̂j = p′j/
t∑

k=1

p′k.(13)

For t = 2 this reduces to the design procedure of Subsection 4.1 except that
the standard deviation T is replaced by 2T.

4.3. Numerical results for adaptive designs
In this section the four allocation rules are compared under the same condi-
tions as before, but with the weights p̂j for the linear combination of treat-
ments estimated from the previous n observations, so that it is assumed
that the responses from all patients are available before allocation is made
for patient n + 1. The three treatment means were taken as α1 = 3.968,
α2 = 0.645 and α3 = 0. Together with T = 1 the algorithm of Subsection
4.2 yields the values of the weights pj as 0.8, 0.15 and 0.05, the values that
were used in the earlier calculations. The values of the responses are simu-
lated by adding an independent standard normal error to the value of α for
the allocated treatment.

The resulting average losses are plotted in Figure 3. Comparison with
the designs for known skewing in Figure 1 shows that the values of L800

have increased by approximately 8 for all rules except that for sequential
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Figure 3. Adaptive designs with σ = 1. Average losses Ln for the four allocation
rules: A, DA-optimality; D, deterministic; E, Efron’s biased coin and
R, random. Averages of 10,000 simulations: Left-hand panel q = 5;
Right-hand panel q = 10. To be compared with Figure 1.

design construction D, where they have increased by around 6. The numbers
for L800 are in Table 2. The effect of the increased uncertainty due to the use
of the adaptive designs is not only to increase the average loss but to change
the shape of the curves. When the observation error is small or, equivalently
as n becomes large, the values of the losses will approach those in Figure 1.

Table 2. Average loss L800 for unregularised and regularised allocations from
10,000 simulations.

Unegularised Regularised
Rule q = 5 q = 10 q = 5 q = 10
A 9.96 10.72 4.57 6.33

D 6.36 5.95 3.34 3.50

E 8.96 9.28 3.72 5.15

R 13.52 18.28 9.05 14.24
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The curves in Figure 3 for rules A, E and D show that the highest values of
average loss have been passed and that the values are starting to decrease.
However, the loss for the completely random rule R is still increasing at
n = 800.

5. Regularisation

A few of the simulated adaptive designs gave rise to exceptionally high losses.
These usually occurred because, due to observational error, treatment 3
seemed even worse than it was. Consequently, the proportion r3 for some
trials was sensibly less than the optimum value of 0.05. To avoid such
problems the adaptive designs were regularised to ensure that each treatment
continued to be allocated throughout the trial, yielding consistent estimates
of the αj . Three of the first nine patients are allocated to each treatment.
Thereafter, if the number allocated to any treatment was below

√
n, that

treatment is allocated when n is an integer squared. For our 800 trial design
with 3 patients allocated initially to each treatment, the first regularisation
could occur when n = 16 and the last when n = 784.

The effect of the regularisation should be that r3 is forced to have values
above 0.05 until n = 400. However, the implementation used in the simu-
lations only checks for balance when n is exactly an integer squared. One
minor effect is that if two proportions are less than

√
n, only one will be

increased. The other is that the proportion will be below 1/
√

n until the
correction is made.

The resulting average losses for the regularised designs are plotted in
Figure 4. Comparison with the designs for known skewing in Figure 1 shows
that the increases in the average loss L800 are around three to four, that
is around half the values of the increases for the unregularised designs in
Figure 3. The numbers are again in Table 2.

The effect of the regularisation is therefore appreciably to reduce
the average loss. A further effect is also clear in both panels of Figure 4,
especially, but not only, in the traces for rule D. The sawtooth pattern of
increases in loss for n < 400 occurs at each point when n is an integer
squared and some designs are being forced to move away from the
optimum since we should have r3 > 0.05. Around n = 400 the effect of
the regularisation does not show. Above that the effect is a decrease in loss
as designs for which r3 is too low are being forced towards the optimum.
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Figure 4. Regularised adaptive designs with σ = 1. Average losses Ln for the four
allocation rules: A, DA-optimality; D, deterministic; E, Efron’s biased
coin and R, random. Averages of 10,000 simulations: Left-hand panel
q = 5; Right-hand panel q = 10. To be compared with Figures 1 and 3.

These effects are small compared with the overall effect of the regularisation
which is, for these values of pj , to prevent designs from having extremely
small values of r3.

The effect of the regularisation on the proportion r3 can be seen in
the plots of average proportions for two allocation rules with q = 5 shown
in Figure 5. In the left hand panel, for rule D, the average values of r3,
and, to a lesser extent, of r2, increase at each regularisation point until n is
around 200. For rule R, shown in the right-hand panel, the average value
of r3 decreases more slowly and the regularisation has a less obvious effect.
The overall effect of the regularisation is that, by ensuring occasional mea-
surements from patients receiving treatment 3, consistent estimates of, in
particular, α3 are obtained; in consequence, under-estimates of the parame-
ters at the start of the trial do not cause continuing serious departures from
the optimum allocation.
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Figure 5. Regularised adaptive designs with σ = 1. Average ratios rj of treat-
ments allocated for two allocation rules when q = 5. Averages of 10,000
simulations: Left-hand panel rule D; Right-hand panel rule R. Again r3

converges more slowly to 0.05 for rule R than it does for rule D. To be
compared with Figure 2.

6. The distribution of loss

Although the average properties of the design are of interest, it is impor-
tant and helpful to look at the individual trials: it is little consolation for a
clinician with a poorly balanced trial to be assured that the average prop-
erties of trials produced by the randomization scheme are excellent. The
properties of the individual trials reinforce the discussion about the effect
of regularisation in Section 5. We compare the properties of regularised and
unregularised designs using rule A when q = 5 and σ = 1.

The left-hand panel of Figure 6 shows boxplots of the distribution of
1,000 values of Ln for n from 100 to 800. The distribution has its longest
upper tail at n = 400. From n from 600 onwards the largest loss is around 35.
The plot for average loss in Figure 4 indicates that the average loss for this
regularised design increases slightly from n = 400 and this is evident from
the trend of the centres of the boxplots. The right-hand panel of Figure
6 shows boxplots for r1, the proportion of patients receiving treatment 1.
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Figure 6. 1,000 individual regularised adaptive designs for rule A when q = 5
and σ = 1. Left-hand panel: boxplots of loss Ln. Right-hand panel:
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0.
05

0.
10

0.
15

0.
20

0.
25

 200  400  600  800

number of patients

pr
op

or
tio

n 
r_

2

Proportion treatment 2

0.
04

0.
08

0.
12

0.
16

 200  400  600  800

number of patients

pr
op

or
tio

n 
r_

3

Proportion treatment 3

Figure 7. 1,000 individual regularised adaptive designs for rule A when q = 5 and
σ = 1. Left-hand panel: proportion r2 of patients receiving the second
treatment. Right-hand panel: proportion r3 of patients receiving the
third treatment.



Adaptive biased-coin designs for clinical trials with ... 101

These converge steadily from below towards 0.8 - even as early as n = 100 the
effect of the starting value of 1/3 has been virtually eradicated. At this point
both r2 and r3 should have minimum values of 0.1, so that the maximum
value of r1 is 0.8. In fact, for the reasons described in the second paragraph
of this section, one trial has a value of 0.84 and several have r1 = 0.81. The
boxplot is thus slightly misleading for this value of n, as it is for n = 200,
because its symmetry does not reflect the underlying distribution.

The plots for the proportions r2 and r3 are in Figure 7. The value of
r2 converges steadily towards 0.15. However, the plot for r3 is very differ-
ent. Initially the regularisation forces virtually all trials to have a value of
0.1 at n = 100: the minimum is 0.08. Likewise, for n = 200 there is little
spread in the distribution of values. Then, as n increases, the mean value
of r3 decreases, as does the minimum value, constrained by the regulari-
sation. Some trials have higher value of r3, above 0.08, but the number
is decreasing.

The corresponding plots for unregularised designs are very different.
We know from Table 2 that the average loss at n = 800 more than doubles
from 4.57 for the regularised design to 9.96 for the unregularised design.
The left-hand panel of Figure 8 shows that this is not only an increase
in the average, but that the upper tail of the distribution also increases
dramatically - the highest loss is around 500 at n = 700, rather than 50.
The plot of the proportion r1 in the right-hand panel now shows
that the average value approaches 0.8 more rapidly than for the
regularised design, but that there are now trials with initially high values
of r2 or r3.

The plot of r2 in the left-hand panel of Figure 9 is centred around
the value of 0.15, but with a higher scatter than for the regularised design.
In particular there seem to be several trials with values of 0.25 or above
for r2, where the maximum for the regularised design is around 0.22. The
greatest effect of the regularisation is on the value of r3 which is centred
close to 0.05 throughout for the unregularised design. But there are now
many trials giving rise to values of r3 close to zero, even at n = 800. A final
feature of these plots is that it is possible to follow the progress of one trial
that has a very small value for r2, a large one for r3 and gives a very large
value of loss throughout. However, for n = 800, it is starting to move in the
direction of the optimum allocation proportions.



102 A.C. Atkinson

0
10

0
20

0
30

0
40

0

 200  400  600  800

number of patients

lo
ss

Loss

0.
70

0.
75

0.
80

0.
85

 200  400  600  800

number of patients

pr
op

or
tio

n 
r_

1

Proportion treatment 1

Figure 8. 1,000 individual unregularised adaptive designs for rule A when q = 5
and σ = 1. Left-hand panel: boxplots of loss Ln. Right-hand panel:
proportion r1 of patients receiving the first treatment.

0.
0

0.
05

0.
15

0.
25

 200  400  600  800

number of patients

pr
op

or
tio

n 
r_

2

Proportion treatment 2

0.
0

0.
05

0.
10

0.
15

 200  400  600  800

number of patients

pr
op

or
tio

n 
r_

3

Proportion treatment 3

Figure 9. 1,000 individual unregularised adaptive designs for rule A when q = 5 and
σ = 1. Left-hand panel: proportion r2 of patients receiving the second
treatment. Right-hand panel: proportion r3 of patients receiving the third
treatment.
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The distribution of loss for several rules is explored by Atkinson [5] for
unskewed designs. But, due to the adaptive nature of the designs consid-
ered here, the distributions are much longer tailed; occasional trials have a
proportion of patients receiving, in particular, treatment three that is far
from the target. Such long tails are a general feature of adaptive methods:
frequent good behaviour is offset by occasional trials in which a large number
of patients is needed.

7. Discussion

The main contribution of this paper is to extend the two-treatment designs
of Atkinson and Biswas [7] to any number of treatments. Examples have
been given of the construction of skewed designs for three treatments when
some randomization is required across prognostic factors. This procedure
has been combined with adaptive estimation of the skewing proportion to
obtain adaptive designs. A subsidiary purpose of the present paper, as an
extension of Atkinson [4], is to provide a methodology for the evaluation
of designs strategies for adaptive clinical trials. We calculate loss, which
is the number of patients on whom information is effectively lost due to
the imbalance of the design. We can also calculate the number of patients
receiving the inferior treatments, so both measures of design performance
are in the same units.

Although the loss for the adaptive designs can be appreciably greater
than that for the designs with known skewed allocation, the curves of av-
erage loss in Figure 3 must converge, for large n or small σ, to those of
Figure 1. The results of Atkinson [5] show that rule R and the Bayesian
rules ultimately have losses with a χ2

q distribution. That for rule D degen-
erates to a point distribution as the loss becomes identically zero. However,
the simulations shown here indicate that the value of n would have to be
so large, or the value of σ so small, that these conditions are unlikely to be
met in practice. The plots of the simulations of Section 6 provide a cogent
way of representing the distribution of possible outcomes for these adaptive
design schemes.

Finally, we comment briefly on a theoretical aspect of our adaptive
designs. In deriving these designs we have used optimum design theory for
regression models with independent errors and then estimated the
unknown value of p from results on earlier patients. A similar strategy of
substitution of parameter estimates is used, for a different criterion and
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example, by Rosenberger et al. [15]. Since each allocation depends on the
earlier responses, the observations are not independent and the likelihood
is complicated. However, Antognini and Giovagnoli [1] prove that, for
responses modelled by the exponential family, the optimum adaptive
designs obtained by sequential use of parameter estimates are indeed
optimum. For our adaptive procedure to be covered by similar results
we would need a result on the temporal distribution of covariates
to assure the convergence of the normalised information matrix GT

nGn/n
to a positive definite matrix. We would also require that the proportion
rj for any j does not tend to zero. Our regularisation assures that
this holds.

Appendix

This appendix summarises the algebra for linear regression models when
there are t treatments. The first two sections establish notation for the
model and give the variance of linear combinations of parameters. The
third section describes the sequential construction of optimum experimental
designs; biased-coin designs are in Section A.4.

A.1 Models
The matrix form of the model (1) for n patients is

(A1) E(Yn) = Gnω = Hnα + Znθ

where Yn is the n × 1 vector of responses for the n patients and α is the
vector of treatment effects. Here Hn is the n×t matrix of indicator variables
for treatment allocation, with one non-zero entry per row, and Zn is the
n × (q − t + 1) extended matrix of prognostic factors, with ith row xi.
Because of the way we have parameterised the treatment effects, Zn does
not include a constant column.

The variance of the least squares estimator of the parameter vector α is

(A2) var {α̂} = σ2
{

HT H −HT Z
(
ZT Z

)−1
ZT H

}−1

,

where σ2 is the variance of the errors, assumed additive in (A1). Here, as
elsewhere, we have suppressed the subscript n when it is not of importance.
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A. 2 Variances of linear combinations of parameters
A skewed allocation is found by designing to estimate a particular linear
combination of the elements of α. For estimation of the general linear com-
bination lT1 α,

(A3) var
(
lT1 α̂

)
= σ2lT1

{
HT H −HT Z

(
ZT Z

)−1
ZT H

}−1

l1,

where l1 is t× 1. A more compact expression is obtained by instead writing
the general linear combination as lT ω = lT1 α+ lT2 θ, which is (2). Since the θ
are nuisance parameters, l2 is a vector of zeroes and an equivalent expression
for (A3) is

(A4) var
{
lT ω̂

}
= σ2lT

(
GT

nGn

)−1
l,

a scalar. When there are three treatments the linear combination (4) is
taken as

(A5) lT1 = (p1 − p2 1− p1 − p2).

The vector l is used to calculate the predicted variance dc(j, n, xn+1) that is
needed in the next section as a component of our design algorithms.

A. 3 Optimum experimental designs
D-optimum experimental designs for the linear regression model E(Y ) = Gω
maximize the determinant |GT G|; they minimize the generalized variance of
the parameter estimates and provide a normal theory confidence region of
minimum volume. Such optimum designs can be constructed sequentially.
After n trials the matrix of allocations and prognostic factors is Gn. The
predicted response at the point g is ŷ(g) with

(A6) var {ŷ(g)} ∝ d(g, n) = gT
(
GT

nGn

)−1
g.

If the vector of allocation and prognostic factors for the (n + 1)st patient is
gn+1, Gn+1 is formed by adding the row gT

n+1 to Gn. A useful matrix result
is that
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(A7)
|GT

n+1Gn+1| =
{

1 + gT
n+1

(
GT

nGn

)−1
gn+1

}
|GT

nGn|

= {1 + d(gn+1, n)} |GT
nGn|.

The optimum treatment for the (n + 1)st patient is therefore that for which
d(gn+1, n), the variance of the predicted response after n trials, is a maxi-
mum.

In the clinical trials considered in this paper, where interest is in the
vector of coefficients l, D-optimality is replaced by c-optimality with designs
being found to minimise lT (GT

n+1Gn+1)−1l. These designs can again be
constructed iteratively, the variance d(gn+1, n) being replaced by

(A8)
dc(j, n, xn+1) =

{
gT
n+1

(
GT

nGn

)−1
l

}2

/lT (GT
nGn)−1l,

(j = 1, . . . , t),

where gn+1 combines the allocation indicator hn+1 for the (n + 1)st patient
and zn+1, the extended vector of prognostic factors, known for the new
patient. In the iterative construction of c-optimum designs, patient n + 1
would, in the absence of randomization, receive the treatment for which
dc(j, n, xn+1) is a maximum, where j runs over all t treatments. In the
numerical examples of this paper, t = 3.

A.4 Sequential biased-coin c-optimum design
We use optimum design theory to generate designs which are unlikely to be
far from balance over the covariates if the trial ceases at an arbitrary time
point. Inclusion of a biased coin provides some randomness.

The vector l forces unequal allocation. At the optimum design, which
allocates a fraction pj of the patients to treatment j, all dc(j, n, xn+1) are
equal. In other designs, a larger value of dc(j, n, xn+1) indicates a treatment
which is under-represented. The original suggestion of Atkinson [2] for DA-
optimality reduces to allocation of treatment j with probability

(A9) πA(j|xn+1) =
pjdc(j, n, xn+1)

t∑

s=1

psdc(s, n, xn+1)

.
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