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Abstract

In the paper two approaches to the problem of estimation of tran-
sition probabilities are considered. The approach by McCullagh and
Nelder [5], based on the independent model and the quasi-likelihood
function, is compared with the approach based on the marginal model
and the standard likelihood function. The estimates following from
these two approaches are illustrated on a simple example which was
used by McCullagh and Nelder.
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1. Problem

Longitudinal studies in biology, medicine or sociology often lead
to estimation of transition probabilities from aggregate data. As pointed
out by Hawkins and Han [1], this idea goes back to Lee, Judge and
Zellender [3] and Kalbfleisch, Lawless and Vollomer [2]. A simple example
of this kind was considered by McCullagh and Nelder [4], [5]. It concerns
the estimation of voter transition probabilities for two parties based on the
vote totals in two successive elections. Although the complete data for
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one constituency can be formed as in Table 1, only the marginal sums
are observed.

Table 1. Complete results of two successive elections.

El 2

1 2

El 1 1 m11 m12 m1·

2 m21 m22 m2·

m·1 m·2 m··

The problem consists in estimating the probabilities

πr|s = P (X2 = r | X1 = s), r, s = 1, 2,

where Xj = r denotes the vote for r-th party in j-th election. Since each
voter can take only one from two contrary decisions, we can focus only on
π1|1 and π1|2.

2. Independent distribution model

In the approach of McCullagh and Nelder [5], the rows of Table 1
are regarded as realizations of two independent binomial random
variables conditioned by the observed vote sums at the first election.
It means that

(1) m11 ∼ B(m1·, π1|1) and m21 ∼ B(m2·, π1|2).

In consequence, for the sum m·1 = m11 + m21, we have

E(m·1 | m1·,m2·) = m1·π1|1 + m2·π1|2

and

V ar(m·1 | m1·,m2·) = m1·π1|1(1− π1|1) + m2·π1|2(1− π1|2).
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The same formulas can be derived considering the convolution of two
successive binomials in the frame of the Markov process (see e.g.
Kalbfleisch, Lawless and Vollomer, [2]).

Assuming now that there are data from n constituencies for which the
same transition probabilities are valid, we obtain the model

(2) E(Y | M) = Mπ , Cov(Y | M) = V(π ),

where Y is an n×1 vector of the totals mi
·1, i = 1, 2, ..., n, M is n×2 matrix

formed from the rows (mi
1·,m

i
2·), π = (π1|1, π1|2)T , while V(π ) is an n×n

diagonal matrix with diagonal elements

vi = mi
1·π1|1(1− π1|1) + mi

2·π1|2(1− π1|2).

If M is of full column rank, an unbiased estimate of π can be determined
by the root π̂ of the nonlinear equation

(3) U(π ) = MTV−1(π )(Y −Mπ ) = 0,

where U(π ) is the quasi-likelihood score function introduced by
Wedderburn [6]. As shown by McCullagh and Nelder ([5], p. 336–339),
the vector U(π ) under model (2), cannot be the gradient vector of any
scalar function Q(π ). Nevertheless, the inverse of the quasi-information
matrix

−E

(
∂U(π )
∂π T

)
= MTV−1(π )M

is, under suitable conditions, the asymptotic covariance matrix of π̂ ,

Cov(π̂ ) =
(
MTV−1(π )M

)−1
.
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3. Marginal model

A different approach follows by assuming that the entries of Table 1 are
governed by two marginal distributions

m1· ∼ B(m,π1), π1 = P (X1 = 1)

and

(4) m·1 ∼ B(k, π2), π2 = P (X2 = 1),

where m is not necessarily equal to k. In consequence

E(m·1) = kπ2

and

V ar(m·1) = kπ2(1− π2).

On the other hand, we have

π2 = P (X1 = 1)P (X2 = 1 | X1 = 1) + P (X1 = 2)P (X2 = 1 | X1 = 2)

= π1π1|1 + (1− π1)π1|2.

This means that the main source of information on the vector π =(π1|1, π1|2)T

is provided by the distribution of m·1. The role of m1· is only auxiliary,
supplying the information on π1. The probability π1 is estimated by the
observed proportion p1, p1 = m1·/m. Therefore, replacing π2 in (4) by
p1π1|1 + q1π1|2, with q1 = 1− p1, we can establish the conditional distribu-
tion of m·1 given the fraction p1. In consequence

E(m·1 | p1) = (p1π1|1 + q1π1|2)k

and
V ar(m·1 | p1) = (p1π1|1 + q1π1|2)(1− p1π1|1 − q1π1|2)k.
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This, in the case of n independent constituencies, leads to the model

(5) E(Y | X) = Nπ , Cov(Y | X) = W(π ),

where Y and π are defined as in (2), X is an n × 1 vector of fractions
pi
1 = mi

1·/mi, i = 1, 2, ..., n, N is an n × 2 matrix formed from rows
(pi

1k
i, qi

1k
i), qi

1 = 1 − pi
1, while W(π ) is an n × n diagonal matrix with

elements

wi =
(
pi
1π1|1 + qi

1π1|2
) (

1− pi
1π1|1 − qi

1π1|2
)
ki.

When ki = mi for all i, i.e., when the system is closed, then N = M. But
wi ≥ vi, which implies that

(6)
(
MTW−1(π )M

)−1 − (
MTV−1(π )M

)−1

is a non-negative definite matrix.
The assumption (4) together with model (5) allow the estimation of the

vector π by solving the standard likelihood equation

(7) U∗(π ) = NTW−1(π )(Y −Nπ ) = 0,

in which U∗(π ) is the score function for n independent binomial distribu-
tions

B(ki, (pi
1π1|1 + qi

1π1|2)).

The asymptotic covariance matrix of the root of (7), π̄ , has a form

Cov(π̄ ) =
(
NTW−1(π )N

)−1
.

Under condition ki = mi and due to (6) the estimator π̄ is less
efficient than π̂ . Nevertheless, it should be emphasized that according
to the distributions specified in (1) the entries of Y and M in model (2)
are obtained by aggregation of the complete data as in Table 1.
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This can be done only by questioning, in the second election, m1· voters from
subpopulation of those who voted for the first party in the first election and,
similarly, by questioning m2· voters who voted for the second party in the
first election. It means that model (2) applies only to the closed system,
i.e., to the populations in which there are no migrations of voters between
elections. Model (5) is different. It is based solely on the results of two
successive elections,where migrations are permissible. In this sense, the
marginal model is less restrictive what, however, is paid off in efficiency of
the estimation.

4. Example

In order to compare the estimates following from the two models under dis-
cussion, we will consider an artificial example which was used by McCullagh
and Nelder [5]. To obtain more realistic data, the numbers of voters were
multiplied by 10. In this example, it is assumed that in three independent
constituencies we have observed the results of the first and second election:

El 1 El 2

m1· m2· Y

50 50 70

60 40 50

40 60 60

After a sequence of iterations the solution of equation (3), corresponding to
the quasi-likelihood method, leads to the estimate π̂ = (0.3629, 0.8371)T ,
while the estimated covariance matrix is

Ĉov(π̂ ) =


 0.0239 −0.0223

−0.0223 0.0232


 .

Using equation (7), following from the fully maximum likelihood method,
we get:

π̄ =


 0.3597

0.8397


 , Ĉov(π̄ ) =


 0.0308 −0.0289

−0.0289 0.0302


 .
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It is easy to note that the estimates obtained are almost identical. However,
the estimated variances confirm less efficiency of the second approach which,
as was stated in the previous section, is a price for a better adequacy of the
marginal model.
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