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Abstract

We give a review on the properties and applications of M-estimators
with redescending score function. For regression analysis, some of these
redescending M-estimators can attain the maximum breakdown point
which is possible in this setup. Moreover, some of them are the so-
lutions of the problem of maximizing the efficiency under bounded
influence function when the regression coefficient and the scale param-
eter are estimated simultaneously. Hence redescending M-estimators
satisfy several outlier robustness properties. However, there is a prob-
lem in calculating the redescending M-estimators in regression. While
in the location-scale case, for example, the Cauchy estimator has only
one local extremum this is not the case in regression. In regression
there are several local minima reflecting several substructures in the
data. This is the reason that the redescending M-estimators can be
used to detect substructures in data, i.e. they can be used in cluster
analysis. If the starting point of the iteration to calculate the estimator
is coming from the substructure then the closest minimum corresponds
to this substructure. This property can be used to construct an edge
and corner preserving smoother for noisy images so that there are ap-
plications in image analysis as well.
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1. Redescending M-estimators

Regard a general linear model yn = x>n β + zn, n = 1, . . . , N , where yn ∈ <
is the observation, zn ∈ < the error, xn ∈ <p the known regressor and
β ∈ <p the unknown parameter vector. For distributional assertions, it is
assumed that the errors zn are realizations of i.i.d. random variables. Set
y = (y1, . . . , yN )> and X = (x1, . . . , xN )>. An M-estimator β̂ = β̂(y, X) for
β is defined by

β̂ ∈ arg min
β

N∑

n=1

ρ(yn − x>n β).

ρ ψ = ρ′

ρ(z) =
log(1 + z2)

ρ(z) =
− exp(−z2)

Table 1. Score functions of two redescending M-estimators.
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Special cases of an M-estimator are the least squares estimator for ρ(z) = z2

and the L1-estimator for ρ(z) = |z|. If the derivative ψ = ρ′ of ρ is
redescending, i.e. satisfies limz→±∞ ρ′(z) = 0, then the M-estimator is
called a redescending M-estimator. Table 1 shows ρ and ψ = ρ′ of two
redescending M-estimators.

2. Redescending M-estimators in regression
analysis

Redescending M-estimators for β have special robustness properties.
Some of them have the highest possible breakdown point. For regres-
sion estimators, there are two types of breakdown point definitions. The
original definition due to Donoho and Huber [13] allows outliers in the
observations as well as in the regressors. Maronna, Bustos and Yohai
[31] found that under this definition, all M-estimators with nondecreas-
ing ψ as the L1-estimator behave as bad as the least squares estimator.
All these M-estimators have a breakdown point of 1

N which means that
they can be biased arbitrarily by one outlier. He et al. [20] and
Ellis and Morgenthaler [14] found that the situation changes
completely if outliers appear only in the observations and not in the
regressors, a situation which in particular appears in designed
experiments where the regressors are given by the experimenter. In this
situation the breakdown point is defined as

ε∗(β̂, y,X) = min
1
N

{
M ; sup

y∈YM (y)
‖β̂(y, X)− β̂(y, X)‖ = ∞

}
,

where

YM (y) =
{
y ∈ <N ; ]{n; yn 6= yn} ≤ M

}
.

Using this defintion, an upper bound for the breakdown point of regression
equivariant estimators is according to Müller [38], [40]

ε∗(β̂, y, X) ≤ 1
N

⌊
N −N (X)− 1

2

⌋
,(1)



62 Ch.H. Müller

where N (X) is the maximum number of xn lying in a subspace of <p, i.e.

N (X) = sup
β 6=0

]
{

n; x>n β = 0
}

.

The upper bound is attained by some least trimmed squares estimators
(Müller [38], [40]) and by redescending M-estimators whose score function
ρ has slow variation, i.e. satisfies

lim
t→∞

ρ(tu)
ρ(t)

= 1 for all u > 0(2)

(Mizera and Müller [34]). In particular the score function of the Cauchy
M-estimator satisfies (2). This score function is shown in the first row of
Table 1. Up to now it is unclear whether the M-estimators with slowly
varying score function are the only M-estimators whose breakdown point
attains the upper bound for any configuration (design) of the regressors.
For special designs also the breakdown point of other M-estimators as of the
L1-estimators can attain the upper bound (Müller [39]).

The results of Mizera and Müller [34] were shown for known scale.
However redescending M-estimators are very sensitive with respect to the
scale parameter so that in practice the scale parameter must be estimated
simultaneously. Mizera and Müller [35] showed that also the breakdown
point of some tuned Cauchy estimators which simultaneously estimate
the regression and the scale parameter attains the upper bound (1).
A M-estimator for simultaneous estimation of the regression and scale
parameter is given by

(β̂, σ̂) ∈ arg min
β,σ

N∑

n=1

ρ

(
yn − x>n β

σ

)
+ K ln σ,

where K is the tuning constant. The estimator is called untuned if K = N .
Mizera and Müller showed their result only for the Cauchy M-estimator
although it seems plausible that it holds also for other M-estimators.
The high breakdown point behavior of the Cauchy M-estimator was also
found by He et al. [21] who compared the behaviour of t-type
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M-estimators with respect to the original definition of the breakdown point
of Donoho and Huber [13]. However the situation changes completely when
orthogonal regression in an errors-in-variables model is considered. Then
according to Zamar [50], any M-estimator with unbounded score function
ρ has asymptotically a breakdown point of zero. In particular the Cauchy
M-estimator for orthogonal regression has an asymptotic breakdown point
of zero.

But redescending M-estimators are not only good with respect to the
breakdown point but have also some optimality properties with respect to
efficiency under bounded influence function. This can be shown by extending
the class of M-estimators to estimators given by

(β̂, σ̂) ∈ arg min
β,σ

N∑

n=1

ρ

(
yn − x>n β

σ
, xn

)
+ N ln σ

or more general to estimators (β̂, σ̂) which are given as solutions of

N∑

n=1

ψ

(
yn − x>n β

σ
, xn

)
x>n = 0,(3)

N∑

n=1

(
1− ψ

(
yn − x>n β

σ
, xn

)
yn − x>n β

σ

)
= 0.(4)

Under suitable regularity conditions, the asymptotic covariance matrix of
these estimators is (see Hampel et al. [18])

σ2

(
Vβ(ψ, δ) 0

0 Vσ(ψ, δ)

)
,

where
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Vβ(ψ, δ) = I(δ)−1 Qβ(ψ, δ) I(δ)−1

and

Vσ(ψ, δ) = Qσ(ψ, δ)/Mσ(ψ, δ)2

with

I(δ) =
∫

xx> δ(dx),

Mσ(ψ, δ) =
∫

(z ψ(z, x)− 1) (z2 − 1)P (dz) δ(dx),

Qβ(ψ, δ) =
∫

ψ(z, x)2 xx> P (dz) δ(dx),

Qσ(ψ, δ) =
∫

(z ψ(z, x)− 1)2 P (dz) δ(dx).

Thereby δ denotes the asymptotic design measure. The influence function
of the M estimator is (see Hampel et al. [18])

(
IFβ(z, x, ψ, δ)

IFσ(z, x, ψ, δ)

)
,

where

IFβ(z, x, ψ, δ) = I(δ)−1 xψ(z, x)

and

IFσ(z, x, ψ, δ) := (z ψ(z, x)− 1)/Mσ(ψ, δ).
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For estimation of only the regression parameter the most efficient
M-estimators with bounded influence function are solutions of minimizing
trVβ(ψ, δ) under the side condition supz,x |IFβ(z, x, ψ, δ)| ≤ bβ. These solu-
tions were characterized by Hampel [17], Krasker [28], Bickel [4], [5], Huber
[26], Rieder [46], [47], Kurotschka and Müller [29] and Müller [37], [40] and
are given by nondecreasing score functions ψ. For simultaneous estimation
of the regression and scale parameter, the most efficient estimators with
bounded influence function have score functions ψ which simultaneously
minimize

trVβ(ψ, δ) and Vσ(ψ, δ)

under the side conditions that

sup
z,x

|IFβ(z, x, ψ, δ)| ≤ bβ and sup
z,x

|IFσ(z, x, ψ, δ)| ≤ bσ.

It is not easy to give a complete characterization of these score functions.
But the results of Bednarski and Müller [3] for the location-scale case indi-
cate that the optimal score functions are given by

ψ(z, xn) = a(xn)/z for |z| > c(xn),

where a(xn) and c(xn) are quantities depending on the regressors. This
means that the optimal M-estimators are redescending M-estimators. The
corresponding score function ρ of the form ρ(z, x) = a(x) log(z) is slowly
varying in the sense of (2). Although the score functions ρ differ by its
dependence on the regressors x from the score functions considered in Mizera
and Müller [34], the result of Mizera and Müller is still valid. This can be
seen by simply extending their proof to the general type of score functions
which is possible since the regressors are fixed without outliers. Hence the
most efficient M-estimators with bounded influence function have also a
breakdown point which attains the upper bound (1) for breakdown points.

The main problem with the most efficient M-estimators with bounded
influence function and highest breakdown point is their computation.
Because of the redescending form of the score function, the objective
function has several local minima in the general case and thus there are
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several simultaneous solutions of (3) and (4). One exception is the Cauchy
estimator for location and scale where only one local extremum exists if
the distribution is not concentrated with equal probabilities at two points
(see Copas [12]). However, Cauchy estimators for regression already have the
general problem of several local extrema as Gabrielsen [16] pointed out. But
highest breakdown point and even consistency can be only achieved if the
global minimum of the objective function is used. In the location case, the
global minimum is often the symmetry center of the underlying distribution
so that the global minimum can be found with Newton-Raphson method
starting at a consistent estimator for the symmetry center (Andrews et al.
[1], Collins [11], Clarke [9], [10]). However for asymmetric distributions or
regression the situation is more complicated (see Freedman and Diaconis
[15], Jurec̆ková and Sen [27], Mizera [32], [33]). One possibility of finding
the global minimum is to calculate each local minimum. For smooth score
functions like that of the Cauchy M-estimator for regression this can be done
by Newton-Raphson method starting at any hyperplane through p points of
the data set. An alternative method is the EM-algorithm proposed by Lange
et al. [30] for computing regression estimators with t-distributed errors.

3. Redescending M-estimators in cluster analysis

The disadvantage of redescending M-estimators that their objective function
has several local minima becomes an advantage in cluster analysis. Mor-
genthaler [36] already pointed out that each local minimum corresponds
to a substructure of the data and Hennig [22], [23] used a fixed point ap-
proach based on redescending M-estimators for clustering. However the use
of redescending M-estimators in cluster analysis has the problem that local
minima do not correspond only to hyperplanes (lines in simple regression)
which can be viewed as cluster centers. Local minima can also correspond
to hyperplanes orthogonal to hyperplanes given by clusters or, more general,
to hyperplanes fitting several clusters or even all clusters. Arslan [2] even
found that the smallest local minimum often correspond to the over all fit.
She therefore developed a test for detecting the ”right” local minima, i.e.
those minima which correspond to regression clusters.

The problem of finding the ”right” local minima can be facilitated by
using more extreme redescending M-estimators and small scale parameters.
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For example the score function of the second line of Table 1, i.e.

ρ(z) = − exp(−z2),(5)

can be used which is up to a constant the density of the normal distribu-
tion. M-estimators based on such a score function cannot be interpreted
anymore as maximum likelihood estimators as it is the case for the Cauchy
M-estimator. The score function is also not anymore slowly varying in the
sense of (2). But the integral of the score function is finite which is not
the case for the other M-estimators which can be interpreted as maximum
likelihood estimators. The property of a finite integral leads to a relation of
M-estimators to kernel density estimators, an observation recently used also
by Chen and Meer [6]. For that note that minimization of

N∑

n=1

ρ

(
yn − x>n β

sN

)

is equivalent to maximization of

ĥN (β) = − 1
N

N∑

n=1

1
sN

ρ

(
yn − x>n β

sN

)
.(6)

Here sN denotes a given scale parameter depending on the sample size N .
In the context of kernel density estimation, the parameter sN plays the role
of the bandwidth. In particular for the location case, where xn = 1 for all
n = 1, . . . , N , we have the well known kernel density estimator

f̂N (µ) = − 1
N

N∑

n=1

1
sN

ρ

(
yn − µ

sN

)
.

It is also known (see e.g. Silverman [48]) that the kernel density estimator
f̂(µ) satisfies

lim
N→∞

f̂N (µ) = f(µ)(7)
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with probability 1 if
∫ −ρ(z) dz = 1, sN converges to zero and some addi-

tional regularity conditions are satisfied. If the observations are coming from
different location clusters, their common distribution has a density with sev-
eral local maxima. The points of the local maxima can be interpreted as
the true cluster centers. Hence the convergence (7) implies the convergence
of the local maximum points of f̂N to the local maximum points of f and
thus to the true cluster centers. This holds of course under some regularity
conditions.

This reasoning can be used also for regression clusters as Müller and
Garlipp [44] pointed out. Müller and Garlipp proved that, like f̂N , also ĥN

of (6) converges to a limit function h if
∫ −ρ(z) dz = 1, sN converges to

zero and some regularity conditions are satisfied. Examples showed that the
highest local maxima of this limit function h correspond to real regression
clusters. However there are also other local maxima with no relation to
a real regression cluster, but these are much smaller so that they can be
distinguished from the other. Because of the convergence of ĥN to h it
can be expected that the highest local maxima of ĥN correspond to real
clusters and that they can be found by studying the height of the local
maxima. Müller and Garlipp showed also that the same reasoning holds for
orthogonal regression in an errors-in-variables model by maximizing

ĥN (a, b) = − 1
N

N∑

n=1

1
sN

ρ

(
(yn, x>n )a− b

sN

)

with respect to a ∈ <p+1 with ‖a‖ = 1 and b ∈ <. Besides the rotation
invariance, the orthogonal regression has the advantage that the limit func-
tion h has an interpretation as density. How regression clusters can be found
by this method is demonstrated by Figures 2 and 3. For more explanations
of this application, see the next section.

4. Redescending M-estimators in image analysis

We will consider here two problems of image analysis. One problem is
to detect objects and structures in the image. The other problem is to
reconstruct a noisy image.
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Figure 1. Noisy Image
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Figure 3. Regression Lines
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Figure 4. Heights of Maxima

For detecting objects and structures a widely used method in computer
vision are the Hough transform and the RANSAC method. Both methods
can be interpreted as an M-estimator based on the zero-one score function

ρ(z) =

{
0 if |z| ≤ 1

1 if |z| > 1.

Recent development used also a smoothed version of the zero-one function
or the biweight function
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ρ(z) =

{
1− (1− z2)3 if |z| ≤ 1

1 if |z| > 1.

See e.g. Chen et al. [7] for an overview. The methods mainly differ in
the choice of the scale parameter and how the local maxima/minima are
found which correspond to substructures/clusters. The methods of finding
the right maxima/minima are always as that of Chen et al. [7] rather com-
plicated. However Müller and Garlipp [44] demonstrated for the problem
of finding the edges of a triangle that the local maxima corresponding to
the edge lines can be easily found by the height of the local maxima. They
used the negative of the score function given by (5) which is differentiable
so that the Newton-Raphson method can be easily applied for determining
the local maxima. It turned out that the result does not depend very much
on the scale parameter. Moreover, there is a natural choice of the scale
parameter since, in a first step, points are determined which should lie close
to the edges. These points can be found by using a rotational density kernel
estimator, a method proposed by Qiu [45]. The bandwidth of the rotational
density kernel estimator is the natural choice of the scale parameter. In the
Figures 1 to 4 this method is demonstrated. Thereby, Figure 2 shows the
points close to edges found by the method of Qiu and Figure 3 provides the
regression lines found by the cluster method. Figure 4 shows that the three
right regression lines 1, 2, 3 have significantly larger heights of the local
maxima.

For finding all local maxima/minima, the Newton-Raphson method
starts at all hyperplanes given by p data points, in the two-dimensional case
at all lines given by two points. Often the found local maximum corresponds
to a cluster to which the starting hyperplane belongs to. This is even always
the case for the location case (p = 1, xn = 1). This observation can be used
for image denoising as Chu et al. [8] proposed. If yn = y(vn) n = 1, . . . , N
are the pixel values of the noisy image at pixel positions vn = (un, tn) lying
in [0, 1]2 then a reconstructed pixel value ŷ(v0) at position v0 can be deter-
mined by M-kernel estimators for nonparametric regression introduced by
Härdle and Gasser [19], i.e. by

ŷ(v0) = µ̂v0 = arg min
µ

N∑

n=1

1
λ2

N

K

(
vn − v0

λN

)
1

sN
ρ

(
yn − µ

sN

)
,
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where K is the kernel function and λN the bandwidth. As long as ρ is
convex and thus ρ′ not redescending, edges are smoothed. For edge pre-
serving image denoising, Müller [41], [43] proposed kernel estimators based
on high breakdown point regression estimators. Chu et al. [8] proposed M-
kernel estimators with score function given by (5). But the most important
feature of the proposal of Chu et al. was to use as starting point for the
Newton-Raphson method the value y(v0), i.e. the pixel value in the center
of the window. This starting point ensures the edge preserving property of
the estimator. This estimator is even corner preserving as Hillebrand [24]
showed. He also showed consistency not only for smooth areas but also for
corners. A consistency proof for jump points in the one-dimensional case
can be found in Hillebrand and Müller [25] as well and for more general
situations in Müller [42]. Figure 7 shows how the corners and edges are pre-
served by applying the method of Chu et al. on the noisy image in Figure
6. Thereby, the image in Figure 6 was generated from Figure 5 - an image
created by Smith and Brady [49] - by adding normal distributed noise.

Figure 5. Original Image Figure 6. Noisy Image

Figure 7 Method of Chu et al.
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