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Abstract

All the symmetric balanced incomplete block (SBIB) designs have
been characterized and a new generalized expression on parameters of
SBIB designs has been obtained. The parameter b has been formulated
in a different way which is denoted by bi, i = 1, 2, 3, associating with
the types of the SBIB design Di. The parameters of all the designs
obtained through this representation have been tabulated while
corresponding them with the suitable formulae for the number of
blocks bi and the expression Si for the convenience of practical
users for constructional methods of certain designs, which is the
main theme of this paper.
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1. Introduction

A balanced incomplete block (BIB) design is an arrangement of v symbols
in b sets, each containing k(< v) symbols such that every symbol occurs
at most once in a set, every symbol occurs in exactly r sets, and every
pair of symbols occurs together in λ sets. The parameters of a BIB design
satisfy

(1.1) vr = bk, λ(v − 1) = r(k − 1).

A BIB design is said to be symmetric if v = b, and consequently r = k.
It is well known (cf. [13]) that in a symmetric BIB design any two sets
have exactly λ symbols in common. Besides a necessary condition for the
existence of an SBIB design is that r−λ be a perfect square when v is even.
The non-existence of certain SBIB designs was demonstrated by Chowla and
Ryser [1] and Shrikhande [14]. Many authors have done much of the work
on these designs for the last so many decades, for example, refer to Hussain
[4], Szekers [17], Zaidi [19].

In this paper we propose a new generalized expression on parameters
of SBIB designs and obtain all the possible parameters of these designs,
and tabulate them, where v ≤ 111 and k ≤ 55, λ ≤ 30, in which there
are some SBIB designs which are not seen elsewhere when compared to
the tables of Collins [2], Kageyama [7], Mathon and Rosa [9], Raghavarao
[13] and Takeuchi [18]. We may take the ranges of parameters to the
higher values also if need be. In this attempt, we classify the SBIB de-
signs into three types, where Type I is with k = nλ for an integer n ≥
2, Type II is with k = nλ + 1 for an integer n ≥ 1 and Type III is
with k = nλ + m for integers n ≥ 1 and m ≥ 2, which give an in-
sight on all SBIB designs in a different way. This type of characteriza-
tion is entirely distinct and found useful for constructional purposes of de-
signs. Depending on these types we formulate the parameter b in each
case. We consider different existing series available in literature and we show
that how they can be fitted in, in the general expression established here.
But as given in Fanning [3], proving an embedding theorem for certain quasi-
symmetric designs, and by using that, a new series of SBIB designs with
v = 9(1 + 16 + 162 + · · ·+ 16m) + 16m+1, k = 9(1 + 16 + 162 + · · ·+ 16m−1)
and λ = 9(1 + 16 + 162 + · · · + 16m−1) + 3 · 16m which is of Type III.
But the parameters that we obtain with this series are so large.
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Consequently, when we enlist all possible designs obtained by the
generalized expression, the parameters of the designs obtained by
different series do exist in the above list itself. Besides in [5] Ionin found
four families of SBIB designs, and when compared to them our generalized
expression S11 is much easier and practicable. And in [6] Ionin interestingly
gave a method of constructing certain SBIB designs. We refer Collins [2],
Kageyama [7], Mathon and Rosa [9], Raghavarao [13] and Takeuchi [18], the
parameters of the designs in these references are all in the list of parameters
of designs we obtained here, but some parameters of designs are seen to be
existing which are not mentioned in any one of these references [2, 7, 9, 13,
18]. Lastly Table 3.1 has been given in the third section, along with the suit-
able formulae for the number of blocks bi, i = 1, 2, 3, which is the main theme
of this paper, with all due references needed for the sake of practical users,
while constructing the other designs using these SBIB designs or construct-
ing these SBIB designs using other designs. To mention a practical purpose,
the SBIB designs play a pivotal role in the construction of affine µ-resolvable
BIB designs for µ ≥ 1. Mohan [10], by taking SBIB designs of Type II, gave
a method of construction of affine µ-resolvable BIB designs by use of cer-
tain SBIB designs through a juxtaposition pattern of a matrix which was
later called by Mohan [11, 12] as Mn-matrix, which played a pivotal role
in the construction of designs. Kageyama and Mohan [8], while generaliz-
ing the above result, gave a method of construction of affine µ-resolvable
BIB designs by taking all the three types of SBIB designs. Shrikhande
and Singh [15] constructed SBIB designs of Type I only, by taking BIB de-
signs with λ = 1 and r = 2k + 1. Shrikhande and Raghavarao [16] also
gave a method of constructing all affine µ-resolvable BIB designs by using
SBIB designs.

2. Main results

Since k > λ holds in an SBIB design, we have k = nλ + m, where n
is the quotient and m is the remainder, 0 ≤ m < n. Then all the SBIB
designs can be classified into three types, namely, Type I is with
k = nλ for an integer n ≥ 2; Type II is with k = nλ + 1 for
an integer n ≥ 1; Type III is with k = nλ + m for integers n ≥ 1
and m ≥ 2.

Theorem 2.1. In an SBIB design of Type I, where k = nλ, k ≥ 2 and
n ≥ 2, b = r + n(r − λ)− (n− 1) holds.
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Proof. Since k = nλ, the parameters of the given SBIB design satisfy
v = b, r = k = nλ, λ. From (1.1), λ(v − 1) = nλ(nλ − 1). Therefore
v = n2λ − n + 1 = n2λ − n + nλ − nλ + 1 = nλ + n(nλ − λ) − (n − 1) =
k + n(k − λ)− (n− 1) or r + n(r − λ)− (n− 1) = b.

Theorem 2.2. In an SBIB design, if b = r + n(r−λ)− (n− 1) holds, then
either k = nλ or k = λ + 1.

Proof. Let the parameters of the SBIB design be v = b, r = k, λ. Then
v−1 = r(r−1)/λ, i.e., v = (r2− r+λ)/λ. Thus we have b = (r2− r+λ)/λ.
But given that b = r+n(r−λ)− (n−1). Now equating these values of b, we
have (r2−r+λ)/λ = r+n(r−λ)− (n−1), which yields r2−r(nλ+λ+1)+
(nλ2 + nλ) = 0. This is a quadratic equation on r that gives r = [nλ + λ +
1 ±

√
(nλ + λ + 1)2 − 4(nλ2 + nλ)]/2 = [nλ + λ + 1 ±

√
(nλ− λ− 1)2]/2.

Hence on simplification r = nλ = k or r = k = λ + 1. Thus, when k = nλ
we obtain the parameters from (1.1), i.e., v = n2λ−n+1 = b, r = k = nλ, λ.
On the other hand, when k = λ+1, from (1.1), λ(v−1) = r(k−1) = rλ, i.e.,
v−1 = r. Therefore v = r +1 = k +1 = λ+2. Thus we have parameters as
v = b = λ + 2, r = k = λ + 1, λ, which obviously yield an irreducible SBIB
design.

Theorem 2.3. In an SBIB design, it is of Type II where k = nλ + 1 if and
only if b = r + n(r − λ) holds for n ≥ 1.

Proof. (Necessity) Let the parameters of the given SBIB design be v =
b, r = k, λ. Since k = nλ + 1, from (1.1), λ(v − 1) = nλ(nλ + 1). Therefore
v − 1 = n(nλ + 1). Thus v = n2λ + n + 1 = n2λ + n + 1 + nλ − nλ =
nλ + 1 + n(nλ + 1)− nλ = k + nk − nλ = r + n(r − λ) = b.

(Sufficiency) From (1.1), we obtain b = (r2 − r + λ)/λ. Equating this
to the value of b from the assumption, we get r2 − r + λ = rλ + nrλ− nλ2.
This gives r = nλ + 1 or λ. But r cannot be equal to λ in an SBIB design.
Hence r = k = nλ + 1.

Remark 2.1. An SBIB design of Type II has parameters v = b = n2λ +
n + 1, r = k = nλ + 1, λ.

Theorem 2.4. In a BIB design, if k = nλ + 1 and b = r + n(r − λ), then
it is an SBIB design.
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Proof. Let the parameters of the given BIB design be v, b, r, k, λ. From
(1.1), we have v = (rk − r + λ)/λ. Therefore b = (r/k)[(rk − r + λ)/λ] =
(r2k − r2 + rλ)/(kλ). Given that b = r + n(r − λ). Now equating the
values of b, we have (r2k − r2 + rλ)/(kλ) = r + n(r − λ). This shows a
quadratic equation on r as r2(k − 1) − r(nkλ + kλ − λ) + knλ2 = 0. This
gives r = [λ(kn + k − 1) ±

√
λ2(kn + k − 1)2 − 4(k − 1)knλ2]/[2(k − 1)],

which shows r = knλ/(k − 1) or r = λ. But given that k = nλ + 1, we get
r = k. Hence v = b. Therefore it is an SBIB design. Note that r > λ in an
SBIB design.

Theorem 2.5. In an SBIB design, it is of Type III where k = nλ + m for
n ≥ 1 and m ≥ 2 if and only if b = r + n(r− λ) + m(n− 1) + t holds, where
t = [m(m− 1)− λ(n− 1)]/λ is an integer.
Proof. (Necessity) Let the parameters of the given SBIB design be v =
b, r = k, λ. Since k = nλ + m, we have λ(v − 1) = (nλ + m)(nλ + m − 1).
Therefore v = [(nλ+m)(nλ+m−1)+λ]/λ = [(nλ+m)(nλ+m−1+λ−λ)+
λ]/λ = {[nλ(nλ+m)+m(nλ+m)−(nλ+m)+λ(nλ+m)−λ(nλ+m)]+λ}/λ.
Since r = nλ + m, we have b = (rnλ + mnλ + m2 − nλ −m + rλ − nλ2 −
mλ + λ)/λ = (rλ + rnλ − nλ2 + mnλ − mλ + m2 − nλ − m + λ)/λ =
r+n(r−λ)+m(n−1)+[m(m−1)−λ(n−1)]/λ. Let [m(m−1)−λ(n−1)]/λ = t.
Then b = r + n(r − λ) + m(n− 1) + t. Finally it will be shown that t is an
integer. In the SBIB design, r = k = nλ + m is a positive integer, where
n,m, λ are all positive integers. Hence n−1 and m−1 are also integers since
m ≥ 2 and n ≥ 1. From (1.1), we have v−1 = r(k−1)/λ. Since v ≥ 2, v−1
is a positive integer, so is r(k − 1)/λ. Since r = k = nλ + m, it holds that
(nλ+m)(nλ+m−1)/λ is also a positive integer, i.e., [(nλ+m)2−(nλ+m)]/λ
is a positive integer. Therefore (n2λ2 +2mnλ+m2−nλ−m)/λ is a positive
integer. That is, [m(m− 1)− λ(n− 1) + n2λ2 + 2mnλ− λ]/λ is a positive
integer. Consequently [m(m−1)−λ(n−1)]/λ+n2λ+2mn−1 is a positive
integer. As the second part is a positive integer the first part should be an
integer.

(Sufficiency) As is usual from (1.1), we obtain b = (r2 − r + λ)/λ.
Equating this to the value of b from the hypothesis, i.e., b = r + n(r −
λ) + m(n− 1) + t, where t = [m(m− 1)− λ(n− 1)]/λ is an integer, we get
r2−r+λ = λ{r+n(r−λ)+m(n−1)+[m(m−1)−λ(n−1)]/λ}. This gives
a quadratic on r as r2−r(nλ+λ+1)+nλ2−mnλ+mλ−m2 +m+nλ = 0.
On solving for r we get an equation r(r−nλ−λ−1) = (nλ+m)(m−λ−1),
i.e., [r− (nλ + m)](r + m− λ− 1) = 0, which shows that r = nλ + m, since
the other case is not possible.
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Remark 2.2. Theorem 2.5 includes Theorems 2.1 and 2.3 when m = 0 and
m = 1, respectively.

Remark 2.3. There are different series of SBIB designs in literature. But
all of them can be brought into the canopy of the generalized expression S11

below obtained in this paper, which we will show now.

Series Parameters Under which type

S1 v = b = n2λ− n + 1, r = k = nλ, λ Type I

S2 v = b = n2λ + n + 1, r = k = nλ + 1, λ Type II

S3 v = b = 4t + 3, r = k = 2t + 1, λ = t Type II, n = 2

S4 v = b = s2 + s + 1, r = k = s + 1, λ = 1 Type I, n=s+1,λ
(Type II, n=s, λ=1)

S5 v = b = (s + 1)(s2 + 1), r = k = s2 + s + 1, Type II, n = s,

λ = s + 1 λ = s + 1

S6 v = b = 4m2, r = k = 2m2 + m,λ = m2 + m Type III, n = 1,
m = m2

S7 v = b = 4m2, r = k = 2m2 −m,λ = m2 −m Type III, n = 1,
m = m2

S6 and S7 are complements to each other

S8 v = b = 4m2 − 1, r = k = 2m2 − 1, λ = m2 − 1 Type II, n = 2

S9 v = b = 4m2 − 1, r = k = 2m2, λ = m2 Type I, n = 2
(Also Type III)

S8 and S9 are complements to each other

S10 v = b = t2(t + 2), r = k = t(t + 1), λ = t, t ≥ 2 Type I, n= t+1
(Also Type III)

S11 v = b = n2λ + n(2m− 1) + 1 + m(m− 1)/λ,

r = k = nλ + m,λ Type III

(The generalized expression of SBIB designs)
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Note 2.1. The generalized expression S11 includes the two Types I and II
besides all the other series S3 to S10 are included.

Note 2.2. S4 can also be shown under Type II, where n = s, λ = 1, k =
nλ + 1 hold. In such a case the values of n, m and t are different.

Note 2.3. All the series S3 to S10 are taken from Raghavarao [13].

Note 2.4. The well-known Bruck-Ryser-Chowla Theorem states that If
v, k, λ are integers satisfying λ(v − 1) = k(k − 1) then for the existence of
an SBIB design it is necessary that

(a) If v is even then k − λ is a perfect square, and

(b) If v is odd then z2 = (k−λ)x2+(−1)(v−1)/2λy2 has a nontrivial solution
in integers x, y, z.

This theorem can be written using the present theory as follows. For the
existence of an SBIB design it is necessary that

(a) If v = n2λ + n(2m− 1) + 1 + m(m− 1)/λ is even, then λ(n− 1) + m is
a perfect square, and

(b) If v = n2λ + n(2m − 1) + 1 + m(m − 1)/λ is odd, then z2 =
[λ(n − 1) + m]x2 + (−1)(v−1)/2λy2 has a nontrivial solution in
integers x, y, z, where integers n ≥ 1 and m ≥ 0.

When m = 0 and m = 1 we get the particular cases of Types I and II,
respectively.

Remark 2.4. We have formulated the parameter b in the three types and
we will denote them as follows for the tabulation purpose.

Type I A = b = r + n(r − λ)− (n− 1), r = k = nλ
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Type II B = b = r + n(r − λ), r = k = nλ + 1

Type III D = b = r + n(r − λ) + m(n− 1) + t, r = k = nλ + m,

where t = [m(m− 1)− λ(n− 1)]/λ is an integer.

Remark 2.5. In the above three formulae A, B and D, the formulae A
and B are the particular cases of the formula D only, i.e., when m = 0 and
m = 1.

Remark 2.6. Even though there are excellent tables of SBIB designs
existing, hereunder, we have given another table of SBIB designs along
with the suitable formula for b. To which series the design belongs is
also given. But all the designs fall in the generalized expression that
has also been depicted in this table. Thus this table corresponds
each design D to the concerned formulae for the number of blocks bi and the
concerned series Si.

3. Tabulation

The parametric ranges in the tables of Raghavarao [13] are v ≤ 100,
k ≤ 15, λ ≤ 15; in the tables of Takeuchi [18] are v ≤ 100, k ≤ 30,
λ ≤ 14; in the tables of Collins [2] are v ≤ 50, k ≤ 23, λ ≤ 11; and
in the table of Mathon and Rosa [9] are r ≤ 41 and k ≤ v/2.
Whereas the limits of these ranges in the present work are v ≤ 111, k ≤ 55,
λ ≤ 30.

For the sake of tabulation we use the following notation. In the column
8, I indicates that it is an irreducible design, E indicates that the design
exists and N indicates the non-existence of the design, and − indicates that
the existence of the design is not known. And s∗ indicates that the design is
the complement of the design of no. s. The reference tables are denoted by
R: Raghavarao [13], T: Takeuchi [18], C: Collins [2], and MR: Mathon and
Rosa [9], in the last column, where “a blank” indicates that the parameters
are not shown in any one of the references R, T, C, MR. (Note that MR
is indicated only when any of R, T, C is not shown as existence or non-
existence of the design.) These designs are also shown because for the sake
of formula of concerned b and the concerned series. Hereunder we enlist
all the possible parameters notifying the status of each design in detail as
follows:
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Table 3.1. Parameters of SBIB designs with v = b ≤ 111, r = k ≤ 55, λ ≤ 30

No. v = b r = k λ n m t I/N/E Formula Series Reference
1 3 2 1 2 0 −1 I A S1, S2, S4, S9

2 4 3 2 1 1 0 I B S2, S5, S6 R
3 5 4 3 1 1 0 I B S2 R
4 6 5 4 1 1 0 I B S2 R
5 7 3 1 3 0 −2 E B S1, S2, S3, S4 R, T, C
6 7 4 2 2 0 −1 5∗ A S1 R
7 7 6 5 1 1 0 I B S2 R
8 8 7 6 1 1 0 I B S2 R
9 9 8 7 1 1 0 I B S2 R

10 10 9 8 1 1 0 I B S2 R
11 11 5 2 2 1 −1 E B S2, S3 R, T, C
12 11 6 3 2 0 −1 11∗ A S1 R
13 11 10 9 1 1 0 I B S2 R
14 12 11 10 1 1 0 I B S2 R
15 13 4 1 4 0 −3 E A S1, S4 R, T
16 13 9 6 1 3 1 15∗ D S11 R
17 13 12 11 1 1 0 I B S2

18 14 13 12 1 1 0 I B S2

19 15 7 3 2 1 −1 E B S2, S3, S5, S8 R, T, C
20 15 8 4 2 0 −1 19∗ A S1, S9 R
21 15 14 13 1 1 0 I B S2

22 16 6 2 3 0 −2 E A S1, S7, S10 R, T
23 16 10 6 1 4 2 22∗ D S6 R
24 16 15 14 1 1 0 I B S2

25 17 16 15 1 1 0 I B S2

26 18 17 16 1 1 0 I B S2

27 19 9 4 2 1 −1 E B S2, S3 R, T, C
28 19 10 5 2 0 −1 27∗ A S1 R
29 19 18 17 1 1 0 I B S2

30 20 19 18 1 1 0 I B S2

31 21 5 1 5 0 −4 E A S1, S4 R, T, C
32 21 16 12 1 4 1 E D S11

33 21 20 19 1 1 0 I B S2

34 22 7 2 3 1 −2 N B S2 R, T, C
35 22 15 10 1 5 2 N, 34∗ D S11

36 22 21 20 1 1 0 I B S2

37 23 11 5 2 1 −1 E B S2, S3 R, T, C
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Table 3.1 (continued-1)

No. v = b r = k λ n m t I/N/E Formula Series Reference
38 23 22 21 1 1 0 I B S2

39 23 12 6 2 0 −1 37∗ A S1

40 24 23 22 1 1 0 I B S2

41 25 9 3 3 0 −2 E A S1 R, T, C
42 25 16 10 1 6 3 41∗ D S11

43 25 24 23 1 1 0 I B S2

44 26 25 24 1 1 0 I B S2

45 27 13 6 2 1 −1 E B S2, S3 R, T, C
46 27 26 25 1 1 0 I B S2

47 27 14 7 2 0 −1 45∗ A S1

48 28 27 26 1 1 0 I B S2

49 29 8 2 4 0 −3 N A S1 T, C
50 29 21 15 1 6 2 49∗ D S11

51 29 28 27 1 1 0 I B S2

52 30 29 28 1 1 0 I B S2

53 31 6 1 6 0 −5 E A S1 R, T, C
54 31 10 3 3 1 −2 E B S2 R, T, C
55 31 15 7 2 1 −1 E B S2, S3 R, T, C
56 31 16 8 2 0 −1 55∗ A S1

57 31 21 14 1 7 3 54∗ D S11

58 31 25 20 1 5 1 53∗ D S11

59 31 30 29 1 1 0 I B S2

60 32 31 30 1 1 0 I B S2

61 34 12 4 3 0 −2 N A S1 T
62 34 22 14 1 8 4 N D S11

63 35 17 8 2 1 −1 E B S2, S3, S8 T, C
64 35 18 9 2 0 −1 63∗ A S1, S9

65 36 15 6 2 3 0 E D S7 R, T
66 36 21 12 1 9 6 65∗ D S6

67 37 9 2 4 1 −3 E B S2 R, T, C
68 37 28 21 1 7 2 67∗ D S11

69 39 19 9 2 1 −1 E B S2, S3 T, C
70 39 20 10 2 0 −1 69∗ A S1

71 40 13 4 3 1 −2 E B S2, S5 R, T, C
72 40 27 18 1 9 4 71∗ D S11

73 41 16 6 2 4 1 E D S11 T, C, MR
74 41 25 15 1 10 6 73∗ D S11 MR



On a characterization of symmetric BIB designs 51

Table 3.1 (continued-2)

No. v = b r = k λ n m t I/N/E Formula Series Reference
75 43 7 1 7 0 −6 N A S1, S4 R, T, C
76 43 15 5 3 0 −2 N A S1 T, C, MR
77 43 21 10 2 1 −1 E B S2, S3 T, C
78 43 22 11 2 0 −1 77∗ A S1

79 43 28 18 1 10 5 N,76∗ D S11 MR
80 43 36 30 1 6 1 N,75∗ D S11

81 45 12 3 4 0 −3 E A S1, S10 R, T
82 45 33 24 1 9 3 81∗ D S11

83 46 10 2 5 0 −4 N A S1 T
84 46 36 28 1 8 2 N,83∗ D S11

85 47 23 11 2 1 −1 E B S2, S3 T
86 47 24 12 2 0 −1 85∗ A S1

87 49 16 5 3 1 −2 E B S2 T, C, MR
88 49 33 22 1 11 5 87∗ D S11 MR
89 51 25 12 2 1 −1 E B S2, S3 T
90 51 26 13 2 0 −1 89∗ A S1

91 52 18 6 3 0 −2 N A S1 T
92 52 34 22 1 12 6 N,91∗ D S11

93 53 13 3 4 1 −3 N B S2 T
94 53 40 30 1 10 3 N,93∗ D S11

95 55 27 13 2 1 −1 E B S2, S3 T
96 55 28 14 2 0 −1 95∗ A S1

97 56 11 2 5 1 −4 E B S2 T, MR
98 57 8 1 8 0 −7 E A S1, S4 R, T
99 58 19 6 3 1 −2 N B S2 T

100 58 39 26 1 13 6 N,99∗ D S11

101 59 29 14 2 1 −1 E B S2, S3 T
102 59 30 15 2 0 −1 101∗ A S1

103 61 16 4 4 0 −3 E A S1 T, MR
104 61 21 7 3 0 −2 N A S1 T, MR
105 61 25 10 2 5 1 E D S11 T
106 61 36 21 1 15 10 105∗ D S11

107 61 40 26 1 14 7 N,104∗ D S11 MR
108 63 31 15 2 1 −1 E B S2, S3, S8 MR
109 63 32 16 2 0 −1 108∗ A S9 MR
110 64 28 12 2 4 0 E D S7 T
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Table 3.1 (continued-3)

No. v = b r = k λ n m t I/N/E Formula Series Reference
111 64 36 20 1 16 12 110∗ D S6

112 66 26 10 2 6 2 E D S11 T, MR
113 66 40 24 1 16 10 112∗ D S11 MR
114 67 12 2 6 0 −5 N A S1 T
115 67 22 7 3 1 −2 N B S2 T
116 67 33 16 2 1 −1 E B S2, S3 MR
117 67 34 17 2 0 −1 116∗ A S1 MR
118 67 45 30 1 15 7 N,115∗ D S11

119 69 17 4 4 1 −3 E B S2 T, MR
120 70 24 8 3 0 −2 E A S1 MR
121 70 46 30 1 16 8 120∗ D S11 MR
122 71 15 3 5 0 −4 E A S1 T
123 71 21 6 3 3 −1 E D S11 T, MR
124 71 35 17 2 1 −1 E B S2, S3 MR
125 71 36 18 2 0 −1 124∗ A S1 MR
126 73 9 1 9 0 −8 E A S1, S4 R, T
127 75 37 18 2 1 −1 E B S2, S3 MR
128 75 38 19 2 0 −1 127∗ A S1 MR
129 76 25 8 3 1 −2 N B S2 T
130 77 20 5 4 0 −3 N A S1 T
131 78 22 6 3 4 0 E D S11 T, MR
132 79 13 2 6 1 −5 E B S2 T, MR
133 79 27 9 3 0 −2 E A S1 MR
134 79 39 19 2 1 −1 E B S2, S3 MR
135 79 40 20 2 0 −1 134∗ A S1 MR
136 81 16 3 5 1 −4 − B S2 T, MR
137 83 41 20 2 1 −1 E B S2, S3 MR
138 83 42 21 2 0 −1 137∗ A S1 MR
139 85 21 5 4 1 −3 E B S2, S5 T, MR
140 85 28 9 3 1 −2 − B S2 T, MR
141 85 36 15 2 6 1 − D S11 MR
142 85 49 28 1 21 15 −,141∗ D S11 MR
143 86 35 14 2 7 2 N D S11

144 86 51 30 1 21 14 N,143∗ D S11

145 87 43 21 2 1 −1 − B S2, S3

146 87 44 22 2 0 −1 −,145∗ A S1

147 88 30 10 3 0 −2 N A S1 T
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Table 3.1 (continued-4)

No. v = b r = k λ n m t I/N/E Formula Series Reference
148 89 33 12 2 9 5 N D S11 MR
149 91 10 1 10 0 −9 E A S1, S4 R, T
150 91 36 14 2 8 3 N D S11 MR
151 91 45 22 2 1 −1 − B S2, S3

152 91 46 23 2 0 −1 −,151∗ A S1

153 92 14 2 7 0 −6 N A S1 T
154 93 24 6 4 0 −3 N A S1 R
155 94 31 10 3 1 −2 N B S2 MR
156 95 47 23 2 1 −1 − B S2, S3

157 95 48 24 2 0 −1 −,156∗ A S1

158 96 20 4 5 0 −4 E A S1, S10 T
159 97 33 11 3 0 −2 − A S1 MR
160 99 49 24 2 1 −1 − B S2, S3, S8

161 99 50 25 2 0 −1 −,160∗ A S9

162 100 45 20 2 5 0 − D S7

163 100 55 30 1 25 20 −,162∗ D S6

164 101 25 6 4 1 −3 E B S2 MR
165 103 18 3 6 0 −5 N A S1 R
166 103 34 11 3 1 −2 − D S11 MR
167 103 51 25 2 1 −1 − B S2, S3

168 103 52 26 2 0 −1 −,167∗ A S1

169 105 40 15 2 10 5 E D S11 MR
170 106 15 2 7 1 −6 N B S2 MR
171 106 21 4 5 1 −4 N B S2 MR
172 106 36 12 3 0 −2 N A S1 MR
173 107 53 26 2 1 −1 − B S2, S3

174 107 54 27 2 0 −1 −,173∗ A S1

175 109 28 7 4 0 −3 E A S1 MR
176 111 11 1 11 0 −10 N A S1, S4 MR
177 111 45 18 2 9 3 − D S11

178 111 55 27 2 1 −1 − B S2, S3

Remark 3.1. The irreducible designs where v = 32 are alone included. The
irreducible design for higher values of v can also be included if need be. All
the complementary designs are not included in the above table, which are
inherently in the table. But some of them are mentioned with the suitable
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formula of b and the suitable series. In fact, all these designs have been
obtained from the new series S11. For complete treatment on complements
of designs see the forth-coming sequel of this paper.

Remark 3.2. There are 22 designs marked as − (unknown) in the column
8. Among these designs a few might have been solved by giving plan of the
design, but for a majority of these designs, solutions are still unknown and
open for further research. And there are 102 designs, which are not enlisted
in any one of R, T and C, but emerged out from the series S11. Further-
more, among these 102 designs there are 34 designs, which are there in our
parameteric range excluding the irreducible and complementary designs.

Remark 3.3. Some of the SBIB designs have been constructed from BIB
designs with λ = 1, and all these SBIB designs are also useful in the con-
struction of affine µ-resolvable BIB designs.

Remark 3.4. There exist no parameters of an SBIB design, which escape
this classification, and this table is more useful than the earlier ones as we
know the method of obtaining the parameters easily. This problem will be
tackled further in a sequel to this paper to appear shortly. Some of the
constructions are also given in that paper.

4. Computer programming for the SBIB designs in C++

Now we propose to construct parameters of all possible SBIB designs within
the considered parametric ranges, by using a computer program. Thus,
it gave the exhaustive list all designs in the present limitations and hence
Remark 3.4 above.
#include<stdio.h>
#include<alloc.h>
main()
{
FILE ∗fp;
int n,c=0, ∗vect[300],numb=0,m,l,v1,v2,r,i,j,u=0,k,p,q,t;
float v,b;
clrscr();
fp=fopen(”vinod.c”,”w”);
fprintf(fp,” v=b r=k l n m t\n”);
fprintf(fp,”..............\n”);
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printf(” \n”);
for(n=1;n<=11;n++)
{
for(m=0;m<=25;m++)
{
for(l=1;l<=30;l++)
{
v1=(((n∗n)∗l)+n∗(2∗m−1)+1);
v2=(m∗(m−1))/l;
v=v1+v2;
b=v;
r=n∗l+m;
t=(m∗(m−1)− (l∗(n−1)))/l;
k=r;
p=k/l;
q=k%l;
if ((v>= 3)&&(v<= 111)&&(r>= 2)&&(r<= 55)&&(k<v)&&(p==n)
&&(m==q)&&(l∗(v−1)==r∗(r−1)))
{
vect[numb]=(int ∗)malloc(6∗sizeof(int));
∗(vect[numb]+0)=(int)v;
∗(vect[numb]+1)=(int)r;
∗(vect[numb]+2)=l;
∗(vect[numb]+3)=n;
∗(vect[numb]+4)=m;
∗(vect[numb]+5)=t;
numb++ ;
c++;
}
}
}
}
printf(”%d\n”,c);
for(i=0;i<numb−1;i++)
{
for(j=0;j<numb−1−i;j++)
{
if(∗(vect[j]+0) >∗ (vect[j+1]+0))
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{
swap((vect[j]+0),(vect[j+1]+0));
swap((vect[j]+1),(vect[j+1]+1));
swap((vect[j]+2),(vect[j+1]+2));
swap((vect[j]+3),(vect[j+1]+3));
swap((vect[j]+4),(vect[j+1]+4));
swap((vect[j]+5),(vect[j+1]+5));
}
}
}
for(i=0;i<numb;i++)
{
for(j=0;j<6;j++)
{
fprintf(fp,”%5d”,∗(vect[i]+j));
printf(”%5d”,∗(vect[i]+j));
}
fprintf(fp,”\n”);
printf(”\n”);
u++;
if(u==20)
{
print(”press any key to continue ...\n”);
getch();
clrscr();
u=0;
}
}
getch();
}
swap(int ∗q,int ∗p)
{
int t;
t=∗q;
∗q=∗p;
∗p=t;
}−
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