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JoÃo Tiago Mexia

Universidade Nova de Lisboa, Departamento de Matemática
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Abstract

F tests that are specially powerful for selected alternatives are built
for sub-normal models. In these models the observation vector is the
sum of a vector that stands for what is measured with a normal error
vector, both vectors being independent. The results now presented
generalize the treatment given by Dias (1994) for normal fixed-effects
models, and consider the testing of hypothesis on the ordering of mean
values and components.
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1. Introduction

While t tests can be one-sided or two-sided, F tests for fixed-effects mod-
els generally do not select alternatives. To overcome this restrictions Dias
(1994) introduced selective F tests. We now present an extension of his
results to sub-normal models.

After discussing how to define the selected alternatives we proceed with
the test observation and show how max-min tests may be obtained. These
tests maximize the minimum power for selected alternatives.
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2. Models and hypothesis

We will use superscripts to indicate the number of components of vectors.
In sub-normal models the vector Y n of observations is the sum of a vector
Zn that stands for what is measured with an error vector en. It is assumed
that:

• Zn and en are independent, we put Zn(i)en;

• en is normal with null mean vector and variance-covariance matrix σ2In,
we write en ∼ N(0n, σ2In);

• Zn belongs to the range space Ω = R(X) of a n × m matrix with
rank(X) = m.

Usual F tests have been derived for these models, see Mexia and Dias (2001),
we now consider F tests specially powerful for selected alternatives.

Since Zn ∈ Ω = R(X) with rank(X) = m we have Zn = XV m and,
with X+ the Moore-Penrose inverse of X, V m = X+Zn. Moreover the
orthogonal projection matrix on Ω will be

(2.1) Q(Ω) = X(X>X)−1X>

so that X>Q(Ω) = X> and, if vn
Ω is the orthogonal projection of vn on Ω

(2.2) X>vn
Ω = X>vn.

If we had a fixed-effects model Y n ∼ N(Xβm, σ2In) and R(W>) ⊆ R(X>)
we would have the hypothesis

(2.3) H0 : Wβm = ψs
0.

To select alternatives to H0, Dias (1994, pgs 21 to 24), used polar coordinates
(r, θ1, ..., θs−1). With θs−1

1 the vector of central angles for ψs
1 − ψs

0, the
selected alternatives

(2.4) H1(ψs
1) : Wβm = ψs

1,

were defined by ‖ψs
1−ψs

0‖ ≥ d and θs−1
1 ∈ D. Let V1 be the set of these ψs

1.
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Returning to sub-normal models, we test

(2.5) H0 : WV m = ψs
0.

The selected alternatives satisfying the condition WV m ∈ V1. For these
alternatives the support of the distribution G(us) of WV m will be contained
in V1.

3. Test derivation

Since en ∼ N(0n, σ2In), en
Ω and en

Ω⊥ will be independent. Now Zn
Ω = Zn

is independent from en, en
Ω and en

Ω⊥ so that Y n
Ω = Zn

Ω + en
Ω = Zn + en

Ω will
be independent from Y n

Ω⊥ = en
Ω⊥ as well as from S = ‖Y n

Ω⊥‖2 = ‖en
Ω⊥‖2

which will be the product by σ2 of a central chi-square with n−m degrees
of freedom.

In what follows the statistic

(3.1) ψ̃s = W (X>X)−1X>Y n

will play a central part. We start by pointing that, since ψ̃s = W (X>X)−1

X>Y n
Ω , and S = ‖Y n

Ω⊥‖2, ψ̃s and S will be independent since Y n
Ω and Y n

Ω⊥
are independent. Moreover

ψ̃s = W (X>X)−1X>(Zn + en)

= W (X>X)−1X>(XV m + en)(3.2)

= WV m + W (X>X)−1X>en.

Thus, when WV m = ψs, we have

(3.3) ψ̃s = ψs + W (X>X)−1X>en ∼ N(ψs, σ2C)

with

(3.4) C = W (X>X)−1W>

and, see Dias (1994, pg 14), the (conditional) joint density of

(3.5) = =
n−m

s

(ψ̃s − ψs
0)
>C−1(ψ̃s − ψs

0)
S

and Θ̃s−1 = θs−1(ψ̃s − ψs
0), will be
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f(z, θs−1|C, λs, n−m) =
e−

1
2
λ>C−1λ

√
s

n−m
h2(θs−1)
k(θs−1)z

(2π)s/2Γ(n−m
2 )

√
det(C)

×
+∞∑

j=0

2j/2Γ(n−m+s+j
2 )aj(θs−1)( s

n−m
z

k(θs−1)
)

j+s−1
2

j!(1 + s
n−mz)

n−m+s+j
2

(3.6)

where

(3.7)





λs = 1
σ (ψs − ψs

0)

k(θs−1) = `s(θs−1)>C−1`s(θs−1)

a(θs−1) = (λs)>C−1`s(θs−1)

h(θs−1) = cos θs−2
1 , ..., cos θs−2

.

The components of `s(θs−1) being

(3.8)





`1(θs−1) = cos θ1... cos θs−1

`2(θs−1) = cos θ1... cos θs−2 sin θs−1
...
`i(θs−1) = cos θ1... cos θs−i sin θs−i+1
...
`s(θs−1) = sin θ1

.

When H0 holds, λs = 0s and the joint (unconditional) density is

f0(z, θs−1|C, 0s, n−m) =

√
s

n−m
h2(θs−1)
k(θs−1)z

(2π)s/2
√

det(C)

Γ(n−m+s
2 )( s

n−m
z

k(θs−1)
)

s−1
2

Γ(n−m
2 )(1 + s

n−mz)
n−m+s

2

= f(z|s, n−m)f0(θs−1)(3.9)

where f(z|s, n − m) is the central F density with s and n − m degrees of
freedom, and

(3.10) f0(θs−1) =
Γ( s

2)
(2π)s/2k(θs−1)s/2

h(θs−1)√
det(C)

.
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In writing these densities we did not indicate that, since we are using polar
coordinates, z > 0, −π

2 ≤ θj ≤ π
2 , j = 1, ..., s − 2, and 0 ≤ θs−1 ≤ 2π. In

what follows we will represent by f(z, θs−1|C, λs, n−m) the joint density of

(3.11) T =
(ψ̃s − ψs

0)
>C−1(ψ̃s − ψs

0)
S

and Θ̃s−1. Since T = s
n−m= we have

(3.12) f(z, θs−1|C, λs, n−m) =
n−m

s
f(

n−m

s
z, θs−1|C, λs, n−m).

When we use the pair (T , Θ̃s−1) instead of the pair (=, Θ̃s−1) the critical
region (k,D) is replaced by ( s

n−mk,D).
According to (3.9), when H0 holds, =(i)Θ̃s−1 = θs−1(ψ̃s − ψs

0). Thus,
the critical region is ]k, +∞[×D this is H0 is rejected if and only if = > k
and Θ̃s−1 ∈ D, the test level will be

(3.13) level(k, D) = (1− F (k|s, n−m))
∫

D
...

∫
f0(θs−1)dθ1...dθs−1.

4. Max-min tests

From the last expression we see that, for a given test level, there is more
than one pair (k, D). To choose a convenient pair Dias (1994, pg 53) intro-
duced max-min tests. These tests maximize the minimum power for selected
alternatives. In fixed-effects models these correspond to the ψs

1 ∈ V1. If the
minimum power is attained for ψs

c,1 the corresponding alternative will be
critical. When we replace βm by V m a random vector that lies in Ω we
obtain a sub-normal model associated to the fixed-effects model.

We now establish

Proposition 1 . When we use a pair (k, D) the test level is the same for
associated models and if the test is max-min with one or more critical al-
ternatives for the fixed-effects model, it is also max-min for the sub-normal
model with the same minimum power for privileged alternatives.

Proof. The first point of the thesis follows from expression (3.9) in the
proceeding section since, when H0 holds, the joint density of = and Θ̃s−1

is the same for associated models. Moreover, with pow(ψs
1) the power of
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the test in the fixed-effects model when H1(ψs
1) holds, the power for the

sub-normal model will be

Pow(G) =
∫

V1

...

∫
pow(us)dG(us).

Now, for every us ∈ V1, we have pow(us) ≥ pow(ψs
c,1), with H1(ψs

c,1) a
critical alternative, so that to complete the proof we have only to point out
that G(.) may be degenerate having all it’s probability concentrated at ψs

c,1.

Thus the construction of max-min tests may be carried out in fixed-effects
models and then, when there are critical alternatives, transferred to sub-
normal models. Dias (1994, pgs 53 to 60) studied in detail the case in which
C = I2 and

V1 = {‖ψ2
1‖ ≥ d; ψ2

1 ≥ 02}
which is of interest in fertilization studies.

If there are critical alternatives and the corresponding power of the
test, for fixed- effects models, exceeds the test level the test is selectively
unbiased. This is the power for selected alternatives exceeds the test level.
According to proposition 1 this property also holds for the associated sub-
normal model.

5. Hypothesis on orderings

We start with normal models assuming n = Jr and µn = ηJ ⊗ 1r, in order
to test

(5.1) H0 : η1 = ... = ηJ

while privileging the alternatives for which

(5.2) ηj`
< ηj′`

, ` = 1, ..., L.

where j1, ..., jL and j′1, ..., j
′
L are sequences of numbers (with possible repli-

cations) from the set {1, ..., J}.
For instance if we wanted to privilege the alternatives in which ηJ =

min{η1, ..., ηJ} we would have

ηJ < ηj , j = 1, ..., J − 1.

This could be of interest if the ηj , j = 1, ..., J were average yields for
cultivars, the first J−1 of these having been obtained through plant breeding
while the last one was a local cultivar.
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In this situation we have J treatments and r replications. Let Y J be the
vector of the treatment mean values multiplied by

√
r and S be the sum

of sums of squares of residuals. Then Y J ∼ N(
√

rηJ , σ2IJ) is independent
from S ∼ σ2χ2

g, with g = J(r − 1) degrees of freedom.
It would be now straightforward to apply the general theory. But practi-

cal difficulties occur, when L and n are not small, in computing the integrals
∫

D
...

∫
f0(θs−1)dθ1, ..., dθs−1

which is necessary to control the first type error. Fortunately a combinatorial
solution for the problem exists. We will have Θs−1 ∈ D if and only if

Yj`
< Yj′`

, ` = 1, ..., L.

Now when H1 holds the Y1, ..., YJ are i.i.d so that all possible orderings will
have probability 1

J ! .
If there are m orderings satisfying the stated conditions we will have

∫

D
...

∫
f0(θs−1)dθ1, ..., dθs−1 =

m

J !
.

For instance in the case of the example we gave this integral would be equal
to 1

J .
This result extends directly to sub-normal models since, as we saw, these

inherit the test level of the associated normal models.
Thus we can control easily the first type errors both in normal and in

sub-normal model, while testing for orderings.
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