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1. Introduction

The covariance-matrix of an autoregressive error-process is given by
(|ρ| < 1)

(1.1) Ω = σ2
u (ρ|i−j|; i, j = 1, . . . , n),

where σ2
u is the variance of the error terms. The inverse Ω−1 of Ω is equal

to

(1.2) Ω−1 = (σ−2
u )

1
1− ρ2




1 −ρ
−ρ1 1 + ρ2 −ρ 0

. . .
0 −ρ 1 + ρ2 −ρ

−ρ 1




.
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Ω−1 is thus a tridiagonal matrix, i. e., if Ω−1 = (ωij) then ωij = 0 if |i−j| > 1.
Ω−1 is needed for the computation of the Aitken-estimators

(1.3) β̂ = (X ′Ω−1X)−1X ′Ω−1y

in a linear regression-model y = Xβ + u.
In cubic equidistant spline interpolation the inversion of the matrix

(1.4) A =




4 1
1 4 1 0

. . .
0 1 4 1

1 4




is required. This matrix can be represented in the form

(1.5) A =
a

1− ρ2




1 + ρ2 −ρ
−ρ 1 + ρ2 −ρ 0

. . .
0 −ρ 1 + ρ2 −ρ

−ρ 1 + ρ2




for some |ρ| < 1, namely

(1.6) ρ = −2 +
√

3 = −0, 2679491 . . .

Indeed,
a

1− ρ2
(1 + ρ2) = 4 and

a

1− ρ2
(−ρ) = 1 implies (1 + ρ2)(−ρ)−1 = 4

or 1 + ρ2 = −4ρ. Since (ρ2 + 4ρ) + 1 = (ρ + 2)2− 3 = 0 if ρ + 2 = ±√3, ρ =
−2 +

√
3 or ρ = −2 − √3. Only the first ρ satisfies |ρ| < 1 and fulfills the

desired requirement. Moreover,

(1.7) a =
1− ρ2

−ρ
= 2

√
3 .
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Therefore

(1.8) A−1 = a−1 Ω0 ,

where Ω0 only slightly differs from the covariance-matrix of an autoregres-
sive error-process. The Törnquist-Egervary formula allows to compute this
difference. It turns out that this computation leads to surprisingly simple
results which can only be found in some scattered literature (see Graybill
[3], p. 286; Nabben [4], p. 298).

2. Autoregressive error-processes

In this section we follow Schönfeld [6], pp. 152–164. We consider the linear
regression model

(2.1) yt = x′tβ + ut, t = 1, 2, . . . , T,

where β is an k×1 parameter-vector to be estimated and xt is a k×1 design-
vector. Thus yt is a random variable and the disturbance-(or error-)term ut

is assumed to follow an autoregressive process of the first order

(2.2) ut = ρut−1 + εt, |ρ| < 1

for t = 2, . . . , T , where εt, t = 2, . . . , T are uncorrelated random vari-
ables with mean zero and varicance σ2. (2.2) represents an inhomogeneous
(stochastic) difference equation which is solved by ut = c(t)ρt. c(t) must
obey the equation

(2.3) ρt(c(t)− c(t− 1)) = εt, t = 2, . . . , T ,

i. e., c(t) = c(1) +
t∑

τ=1

(c(τ))− c(τ − 1)) = c(1) +
t∑

τ=2

ρ−τετ and finally

(2.4) ut = ρtc(1) +
t∑

τ=2

ρt−τετ .

Since the empty sum equals zero, c(1) = u1ρ
−1 and thus finally
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(2.5) ut = ρt−1u1 +
t∑

τ=2

ρt−τετ .

We assume that E(u1) = 0 and u1 is uncorrelated with the εt. From this it
follows that

(2.6)

Var (ut) = σ2

{
ρ2(t−1) Var (u1)

σ2
+

t∑

τ=2

ρ2(t−τ)

}

= ρ2(t−1)Var (u1) + σ2 1− ρ2(t−1)

1− ρ2
.

If we make the assumption “Nature does not jump”, i. e. Var (ut) = Var (u1),
we get

(2.7) Var (u1)(1− ρ2(t−1)) =
σ2(1− ρ2(t−1))

1− ρ2
,

i. e. Var (u1) =
σ2

1− ρ2
. This result can also be obtained in another way. If

we assume that ut = ρut−1 + εt, t ≤ T , i. e., t = . . . − n,
−(n− 1), . . . , 0, 1, . . . , T , then it follows by mathematical induction that

(2.8) ut =
∞∑

τ=0

ρτεt−τ .

From this follows

(2.9) Var (ut) = Var (u1) =
∞∑

τ=0

ρ2τ =
σ2

1− ρ2
,

since |ρ| < 1 has been assumed. An elementary computation also shows that
for s ∈ N:

(2.10) Cov (ut, ut+s) =
σ2

1− ρ2
ρs .
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Thus

(2.11)
Ω = Cov (u1, . . . , uT )′ =

σ2

1− ρ2
(ρ|i−j|; i, j = 1, . . . , T )

= σ2
u(ρ|i−j|; i, j = 1, . . . , T ).

The formula for Ω−1 can be proved by simple verification. There is, however,
also a statistical approach for determining Ω−1. Consider the matrix

(2.12) B =




1 0
−ρ 1

−ρ
. . . . . .

0 −ρ 1




.

Since detB = 1, B is regular and imB = imBΩ = RT . Consequently if
X ′ = (x1, . . . , xT ) and we consider the linear regression model y = Xβ + u
the statistic By is a linearly sufficient statistic (Drygas, 1984) since imX ⊆
im (Ω + XX ′)B′ = im (Ω + XX ′) = im (Ω)+ im (X). Now

(2.13) By = (y1, y2 − ρy1, . . . , y2 − ρyτ−1)′ = (y1, ỹ2, . . . , ỹT )′

and

(2.14) E(y1) = E(x′1β + u1) = x′1β, Var (y1) = Var (u1) =
σ2

(1− ρ2)
,

(2.15)
E(yi − ρyi−1) = E(xi − ρxi−1 + εi) = xi − ρxi−1,

Var (yi − ρyi−1) = Var (εi) = σ2 .

If we, moreover, replace y1 by

(2.16) ỹ1 = (1− ρ2)1/2y1 ,

then Cov (ỹ1, ỹ2, . . . , ỹt)′ = σ2IT . Therefore there exist two equivalent pos-
sibilities to compute the Gauss-Markov estimator (GME) in the regression
model y = Xβ + u. Either we can use the Aitken-formula
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(2.17) β̂ = (X ′Ω−1X)−1X ′Ω−1y

or we can use the formula

(2.18) β̂ = (X̃ ′X̃)−1X̃ ′ỹ,

where Eỹ = X̃β, X̃ ′ = (x1(1 − ρ2)1/2, xi − ρxi−1, i = 2, . . . , T ). We
specialize to the case k = 1 and let X = ei, the i-th unit-vector. Then

(2.19) β̂ = (X ′Ω−1X)−1X ′Ω−1y =

∑T
j=1(Ω

−1)i,j yj

(Ω−1)i,i
.

On the other hand for i = 1

(2.20) X̃ = ((1− ρ2)1/2,−ρ, 0, . . . , 0)′ .

(2.21) X̃ = (0, . . . , 0, 1
(i)

,−ρ, 0, . . . , 0)′

for i = 2, . . . , T − 1 and finally for i = N

(2.22) X̃ = (0, . . . , 0, 1)′ .

Thus

(2.23) X̃ ′X̃ = 1(i = 1), X̃ ′X̃ = 1+ρ2(2 ≤ i ≤ T−1), X̃ ′X̃ = 1(i = T ) ,

(2.24) (X̃ ′X)−1 = 1, i = 1, T, (X̃ ′X̃)−1 =
1

1 + ρ2
(2 ≤ i ≤ T − 1) .

For i = 1 we get

(2.25) y1 +
(Ω−1)1,2 y2

(Ω−1)1,1
= (1− ρ2)y1 − ρ(y2 − ρy1) = y1 − ρy2 .
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This implies that the first line of (Ω−1) is equal to (Ω−1)1,1(1,−ρ, 0, . . . , 0).
Multiplying this with the first column of Ω yields (Ω−1)1,1(1− ρ2) = 1, i. e.,

(Ω−1)1,1 =
1

1− ρ2
. For i = T we get

(2.26)
T∑

j=1

(Ω−1)T,j yj = (Ω−1)i,T (yT − ρyT−1) ,

i. e., the last line of Ω−1 is proportional to (0, . . . , 0,−ρ, 1) which again yields
(Ω−1)T,T = (1− ρ2)−1. For 2 ≤ i ≤ T − 1

(2.27)

T∑

j=1

(Ω−1)i,j yj =
(Ω−1)i,i

1 + ρ2
(yi − ρyi−1 − ρ(yi+1 − ρyi))

=
(Ω−1)i,i

1 + ρ2
[(1 + ρ2)yi − ρyi−1 − ρyi+1] .

Thus the i-th line of Ω−1 is proportional to (0, . . . ,−ρ, 1 + ρ2

(i)
,−ρ, 0, . . . , 0).

The constant (Ω−1)i,i must be found from the equation

(2.28)

(Ω−1)i,i

1 + ρ2
((1 + ρ2)− 2ρ2) =

(Ω−1)i,i

1 + ρ2
(1− ρ2) = 1,

(Ω−1)i,i =
1 + ρ2

1− ρ2

and the i-th line of Ω−1 is equal to

(2.29)
1

1− ρ2
(0, . . . ,−ρ, 1 + ρ2

(i)
,−ρ, . . . , 0) .

3. Cubic equidistant splines

Consider the interval [0, 1] and the points

(3.1) x = 0, xk =
k

n
, k = 1, 2, . . . , n− 1, xn = 1 .
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f(x), x ∈ [0, 1] is called a cubic spline if

(3.2) f(x) =
3∑

j=0

a
(k)
j (x− xk)j , xb ≤ x ≤ xk+1, k = 0, 1, 2, . . . , n− 1

and

(3.3) f(xk) = yk, k = 0, . . . , n,

where the yk = g(xk) is a given function. f(x) is considered as an in-
terpolation of g(x). Moreover, it is required that f(x) is twice continu-
ously differentiable. Let f ′′(xk) = Mk. The Mk are called moments. Then
Mk, k = 1, . . . , n− 1, obeys the equation

(3.4)




4 1
1 4 1 0

1 4 1
. . .

0 1 4 1
1 4







M1
...
...
...

Mn−1




=




V1
...
...
...

Vn−1




,

where V1, . . . , Vn−1 are linear functions of yi (see Schwarz [7], p. 125, Stoer
[8], p. 81, Törnig/Spellucci [9], p. 77). The matrix

A =




4 1 0
1 4 1

. . .
1 4 1

0 1 4




(3.5)

is a tridiagonal matrix. Usually the equation system Am = v is solved by
representing A as a product of two bidiagonal matrices (see Schwarz [7]).
For example

(3.6)




4 1 0
1 4 1
0 1 4


 =




1 0 0
1
4 1 0
0 4

15 1







4 1 0
0 15

4 1
0 0 56

15






Autoregressive error-processes, cubic splines and ... 155

and therefore

(3.7)




4 1 0

1 4 1

0 1 4




−1

=




1
4 − 1

15
1
56

0 4
15 − 1

14

0 0 15
56







1 0 0

−1
4 1 0
1
15 − 4

15 1




= 1
56




15 −4 1

−4 16 −4

1 −4 15


 .

However, A is very similar to Ω−1 and therefore there might be an explicit
formula for A−1 which may perhaps also be convenient from the computa-
tional point of view. As shown in the introduction

(3.8)

A =
1− ρ2

(−ρ)




1 + ρ2

1− ρ2

−ρ

(1− ρ2)
0

−ρ

(1− ρ2)
1 + ρ2

1− ρ2

−ρ

1− ρ2

0
. . .

−ρ

1− ρ2

1 + ρ2

1− ρ2




,

where ρ = −2 +
√

3. Thus

(3.9) A =
(1− ρ2)
−ρ





Ω−1 +
ρ2

1− ρ2




1 0
...

...
0 1




(
1 · · · · · · 0
0 · · · · · · 1

)




.

If we apply the well-known Törnquist-Egervary formula

(3.10) (B + CD)−1 = B−1 −B−1C(I + DB−1C)−1DB−1

we can find an explicit formula for A−1. This is done in the next section.
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4. The inversion of some tridiagonal matrices

We consider matrices of the form

(4.1) A =




β 1
1 β 1 0

. . .
0 1 β 1

1 β




,

where β ∈ C and ρ = −β

2
+

1
2

√
β2 − 4. If β ∈ R and β2 > 4, then |ρ| < 1.

If β2 < 4, then ρ ∈ C and |ρ| = 1. Special attention will be paid to the cases
ρ2 = 1 and ρ2(n+1) = 1 because in these cases the derived formulae may not
be valid. The case β = 4 is needed in spline interpolation. We denote the
matrix A in (4.1) by An(β).

Theorem 4.1. Let A = An(β). Then

(4.2) An(β) =
1− ρ2

(−ρ)

{
Ω−1 +

ρ2

1− ρ2
(e1en)(e1, en)′

}

and

(4.3) (An(β))−1 = (bij) ,

(4.4) bij =
−ρi−j+1(1− ρ2j)(1− ρ2(n−i+1))

(1− ρ2) (1− ρ2(n+1))

if i ≥ j and ρ2 6= 1, ρ2(n+1) 6= 1. If j ≥ i then bij = bji as above. This result
is correct for n ≥ 2.

Proof. According to (3.10) we have to compute

(4.5) (I2 + C Ω D)−1
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where C =
ρ2

1− ρ2
D′, D = (e1, en)′, ei the i-th unit-vector. We get

(4.6)

(I2 + C Ω D) =
(

1 0
0 1

)
+

ρ2

1− ρ2




1 0
... 0
0 1


Ω

(
1 · · · 0
0 · · · 1

)

= I2 +
ρ2

1− ρ2

(
1 ρn−1

ρn−1 1

)

=
1

1− ρ2

(
1 ρn+1

ρn+1 1

)
,

(4.7)
(

I2 +
ρ2

1− ρ2
D Ω D

)−1

=
1− ρ2

(1− ρ2(n+1))

(
1 −ρn+1

−ρn+1 1

)
.

From Ω




1 0
...

...
0 1


 =




1 ρn−1

...
...

ρn−1 1


 it follows that

(4.8)

ρ2

1− ρ2
ΩD′

(
I2 +

ρ2

1− ρ2
D′Ω D

)−1

D Ω =

=
ρ2

1− ρ2(n+1)




1− ρ2n ρn−1 − ρn+1

...
...

ρi−1 − ρ2n−(i−1) ρn−i − ρn+i

...
...

ρn−1 − ρn+1 ρn − ρ2n




(
1 · · · ρn−1

ρn−1 · · · 1
)

.

We have compute the inner product of the i-th row of the left hand matrix
with the j-th column of the right hand matrix. This yields
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(4.9)

(ρi−1 − ρ2n−(i−1))ρj−1 + (ρn−i − ρn+i)ρn−j =

= ρi+j−2 − ρ2n−i+j + ρ2n−i−j − ρ2n+i−j .

Thus

A−1 =
(4.10)

=
(−ρ)
1−ρ2

{
ρ|i−j|− ρ2

1− ρ2(n+1)

[
ρi+j−2+ρ2n−(i+j)−ρ2n−i+j−ρ2n+i−j

]}
.

We now consider the case i ≥ j – no restriction in view of symmetry. We
get

bij =
(−ρ)
1− ρ2

1
1− ρ2(n+1)

{ρi−j(1− ρ2(n+1))} − ρi+j − ρ2(n+1)−(i+j)

+ρ2(n+1)−i+j + ρ2(n+1)−j+i

=
(−ρ)
1− ρ2

1
1− ρ2(n+1)

{ρi−j − ρi+j − ρ2(n+1)−(i+j) − ρ2(n+1)−i+j}

(4.11)

=
−ρ

(1− ρ2)
1

(1− ρ2(n+1))
(ρi−j − ρi+j)

=
−ρ

1− ρ2

ρi−j(1− ρ2j)(1− ρ2(n−i+1))
1− ρ2(n+1)

= − ρi−j+1(1− ρ2j)(1− ρ2(n−i+1))
(1− ρ2)(1− ρ2(n+1))

.

The theorem is not valid for n = 1, but if n = 1 and hence i = j = 1 then
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(4.12)

−ρi−j+1(1− ρ2j)(1− ρ2(n−i+1))
(1− ρ2)(1− ρ2(n+1))

=

= −ρ
(1− ρ2)
1− ρ4

=
−ρ

1 + ρ2
=

−ρ

−βρ
=

1
β

.

Thus the formula is also correct for n = 1. We prove the theorem again by
additionally slightly generalizing it. If

(4.13) A =




β α 0

γ
. . . . . .
. . . . . . . . . α

0
. . . γ β




= Au(α,β,γ)

and α, γ 6= 0 (The case α = 0 or γ = 0 leads to a bidiagonal matrix easily
invertible.), then

(4.14) An(α, β, γ) =
√

αγAn

(√
α

γ
,

β√
αγ

,

√
γ

α

)

and

(4.15) (An(α, β, γ))−1 = (αγ)−
1
2 A−1

n

(√
α

γ
,

β√
αγ

,

√
γ

α

)
.

Thus it is no restriction to assume that αγ = 1.

Theorem 4.2. Let A = An(α, β, γ), where αγ = 1. Then A−1(α, β, γ) =
(bij) and

(4.16) bij =
−αi−jρi−j+1(1− ρ2j)(1− ρ2(n−i+1))

(1− ρ2)(1− ρ2(n+1))
, i ≥ j,

where ρ2 + βρ + 1 = 0. If i ≤ j, then

(4.17) bij =
−γj−iρj−i+1(1− ρ2j)(1− ρ2(n−j+1))

(1− ρ2)(1− ρ2(n+1))
.
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Proof. Only the case i ≥ j must be considered, since the case j ≤ i follows
by transposition. The proof for i ≥ j is done by mathematical induction.
For n = 1

(4.18) b11 = −ρ
(1− ρ2)
(1− ρ4)

=
−ρ

1 + ρ2
=

−ρ

−βρ
= +

1
β

,

if β 6= 0, i. e., A1(α, β, γ) is invertible. We now assume that the formula is
correct for n and we use the formula (see Rao [5], p. 33)

(4.19)


 An

... α en· · · · · · · · · · · · · · ·
γ e′n

... β



−1

=

=


 A−1

n + A−1
n α enE−1

n γ e′nA−1
n

... −αA−1
n enE−1

n· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
−E−1

n γ e′nA−1
n

... E−1
n


 ,

where En = β − αγ e′nA−1
n en = β − e′nA−1

n en (Schur-complement). By
assumption

(4.20) e′nA−1
n en =

−ρ

1− ρ2

(1− ρ2n)(1− ρ2)
(1− ρ2(n+1))

=
−ρ(1− ρ2n)
(1− ρ2(n+1))

.

Thus

(4.21)

En =
β(1− ρ2(n+1) + ρ(1− ρ2n))

(1− ρ2(n+1))

=
−ρ2n+1(1 + βρ) + β + ρ

(1− ρ2(n+1))
=

ρ(2n+1)ρ2 + β + ρ

(1− ρ2(n+1))

=
ρ2n+3 − ρ−1

(1− ρ2(n+1))
=

−ρ−1(1− ρ2(n+2))
(1− ρ2(n+1))

since ρ2 = −(1 + βρ), (β + ρ)ρ = ρ2 + βρ = −1 and finally

(4.22) E−1
n = − ρ(1− ρ2(n+1))

1− ρ2(n+2)
.
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This finishes the induction-proof in the case of the (n + 1, n + 1)th element
of An+1(α, β, γ). Since

(A−1
n en)j = − αn−jρn−j+1(1− ρ2j)

(1− ρ2(n+1))

it follows that

(4.23)

−α(A−1
n en)jE

−1
n = (A−1

n+1)j,n+1 =

= −α(n+1)−jρ(n+1−j+1)(1−ρ2j)

(1−ρ2(n+2))
.

This is the desired formula with n replaced by n + 1. Similarly follows from

(4.24) (e′nA−1
n )i =

−γn−iρn−i+1(1− ρ2i)
(1− ρ2(n+1))

that

(4.25) −γ(e′nA−1
n )i =

−γn+1−iρn+1−i+1(1− ρ2i)
(1− ρ2(n+1))

,

i. e., the formula with n replaced by n + 1. Finally for i ≥ j we compute

(4.26)

C =
−αi−jρi−j+1(1− ρ2j)(1− ρ2(n−i+2))

(1− ρ2(n+2))(1− ρ2)

−−ρi−jρi−j+1(1− ρ2(n−i+1))(1− ρ2j)
(1− ρ2(n+1))(1− ρ2)

.

The first term is asserted to be (A−1
n+1)i,j), while the second term is (A−1

n )i,j .
We have to show that



162 H. Drygas

(4.27)

C = (A−1
n )i,j(A−1

n )i,nE−1
n

=
−αn−jρn−j+1(1− ρ2j)(1− ρ2)γn−i(1− ρ2i)(1− ρ2)ρn−i+1ρ

(1− ρ2)(1− ρ2(n+1))(1− ρ2(n+2))(1− ρ2)

=
(αi−jρi−j+1)ρ2(n−i+1)(1− ρ2i)(1− ρ2j)(1− ρ2)

(1− ρ2)(1− ρ2(n+1))(1− ρ2(n+2))
.

By shortening common factors we have to show that

(4.28)
D = (1− ρ2(n−i+2))(1− ρ2(n+1))− (1− ρ2(n−i+1))(1− ρ2(n+2))

= ρ2(n−i+1)(1− ρ2i)(1− ρ2) .

A simple algebraic manipulation shows that this indeed true. A similar
argument holds for i ≤ j.

A still simpler representation of A−1 is possible. Since ρ2 = −(βρ+1), ρn =
an + bnρ for some an, bn ∈ C. Now ρn+1 = anρ + bnρ2 = an+1 + bn+1ρ =
anρ − bn(βρ + 1) = (an − βbn)ρ − bn. Thus an+1 can be chosen equal to
−bn, while bn+1 can be chosen equal to an − βbn = −(bn−1 + βbn). We get
therefore the difference-equation

(4.29) bn+1 + βbn + bn−1 = 0 .

Obiously, b0 = 0, a0 = 1, b1 = 1, a1 = −b0 = 0. Before formulating the
next theorem we note that ρ 6= 0.

Theorem 4.3. bn =
(1− ρ2n)ρ−(n−1)

1− ρ2
, n = 0, 1, 2, . . .

Proof. This formula is correct for n = 0, 1 and if it is correct for n− 1 and
n, then
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(4.30)

bn+1 = −(βbn + bn−1)

=
−1

1− ρ2
(β(1− ρ2n)ρ−(n−1) + (1− ρ2(n−1))ρ−(n−2))

=
−ρ−(n−1)

1− ρ2
((1− ρ2n)β + (1− ρ2(n−1))ρ)

=
−ρ−(n−2)

1− ρ2
((β + ρ)− ρ2n−1(βρ + 1))

=
ρ−(n−1)

1− ρ2
(ρ−1 − ρ2n+1)

=
ρ−(n−1)ρ−1

1− ρ2
(1− ρ2(n+1))

=
ρ−n

1− ρ2
(1− ρ2(n+1)) .

Corollary 4.4. A−1 = (bij), where

(4.31)

bij = −αi−j bjbn−i+1

bn+1
, i ≥ j,

bij = −γj−i bibn−j+1

bn+1
, j ≥ i.

Proof. Since bj =
(1− ρ2j)ρ−(j−1)

1− ρ2
,

(4.32) bn−i+1 =
(1− ρ2(n−i+1))

1− ρ2
ρ−(n−i) ,

and finally

bn+1 =
1− ρ2(n+1)

1− ρ2
ρ−n,

the Corollary follows immediately from Theorem 4.1.
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The formulae given by Corollyry 4.4 are even simpler then the result of
Theorem 4.1 and Theorem 4.2. However, the bk may be very large numbers
which can cause inaccuracies in a numerical result. The adventage of Theo-
rem 4.1 and Theorem 4.2 lies in the fact that only small numbers of [−1, 1]
must be multiplied.

Example 4.5. Let again n = 3 and β = 4, α = γ = 1. Then b0 = 0, b1 =
1, b2 = −4, b3 = 15, b4 = −56 and




4 1 0
1 4 1
0 1 4



−1

=
−1
b4




b3 b2 b1

b2 b2
2 b2

b1 b2 b3


 =

1
56




15 −4 1
−4 16 −4

1 −4 15


 .

Remark 4.6. We did not yet discuss the case ρ2 = 1 or ρ2(n+1) = 1. If ρ2 =
1, than ρ = +1 and ρ = −1, respectively, while bn = n and bn = (−1)nn,
respectively. It turns out that the formulae of Theorem 4.1 and 4.2 are still
correct in the sense that we pass to the limit ρ2 → 1 (Drygas [2]).

In a subsequent paper it will be shown that if ρ2 6= 0 then bn = 0 is
equivalent to ρ2(n+1) = 1. It is not hard to prove that det (An(α, β, γ)) =
(−1)nbn+1. Therefore the formulae of Theorems 4.1 and 4.2 apply in all
cases when A−1 exists.
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