AUTOREGRESSIVE ERROR-PROCESSES, CUBIC SPLINES AND TRIDIAGONAL MATRICES

Hilmar Drygas
Universität Kassel
Fachbereich 17 Mathematik/Informatik
Heinrich-Plett-Straße 40, D-34132 Kassel
e-mail: drygas@mathematik.uni-kassel.de

Abstract

In the paper formulate for the inversion of some tridiagonal matrices are given. The results can be applied to the autoregressive processes.

Keywords: autoregressive processes, cubic splines interpolation, linear regression model, time series. 2000 Mathematics Subject Classification: 62M10.

1. Introduction

The covariance-matrix of an autoregressive error-process is given by $(|\rho|<1)$

$$
\begin{equation*}
\Omega=\sigma_{u}^{2} \quad\left(\rho^{|i-j|} ; i, j=1, \ldots, n\right), \tag{1.1}
\end{equation*}
$$

where σ_{u}^{2} is the variance of the error terms. The inverse Ω^{-1} of Ω is equal to

Ω^{-1} is thus a tridiagonal matrix, i. e., if $\Omega^{-1}=\left(\omega_{i j}\right)$ then $\omega_{i j}=0$ if $|i-j|>1$. Ω^{-1} is needed for the computation of the Aitken-estimators

$$
\begin{equation*}
\hat{\beta}=\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1} y \tag{1.3}
\end{equation*}
$$

in a linear regression-model $y=X \beta+u$.
In cubic equidistant spline interpolation the inversion of the matrix

$$
A=\left(\begin{array}{llll}
41 & & & \tag{1.4}\\
141 & & & 0 \\
& & \ddots & \\
& 0 & & 141 \\
& & & 14
\end{array}\right)
$$

is required. This matrix can be represented in the form
(1.5) $\quad A=\frac{a}{1-\rho^{2}}\left(\begin{array}{ccccccc}1+\rho^{2} & -\rho & & & & & \\ -\rho & 1+\rho^{2} & -\rho & & & 0 & \\ & & & \ddots & & & \\ & 0 & & & -\rho & 1+\rho^{2} & -\rho \\ & & & & & -\rho & 1+\rho^{2}\end{array}\right)$
for some $|\rho|<1$, namely

$$
\begin{equation*}
\rho=-2+\sqrt{3}=-0,2679491 \ldots \tag{1.6}
\end{equation*}
$$

Indeed, $\frac{a}{1-\rho^{2}}\left(1+\rho^{2}\right)=4$ and $\frac{a}{1-\rho^{2}}(-\rho)=1$ implies $\left(1+\rho^{2}\right)(-\rho)^{-1}=4$ or $1+\rho^{2}=-4 \rho$. Since $\left(\rho^{2}+4 \rho\right)+1=(\rho+2)^{2}-3=0$ if $\rho+2= \pm \sqrt{3}, \rho=$ $-2+\sqrt{3}$ or $\rho=-2-\sqrt{3}$. Only the first ρ satisfies $|\rho|<1$ and fulfills the desired requirement. Moreover,

$$
\begin{equation*}
a=\frac{1-\rho^{2}}{-\rho}=2 \sqrt{3} \tag{1.7}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
A^{-1}=a^{-1} \Omega_{0} \tag{1.8}
\end{equation*}
$$

where Ω_{0} only slightly differs from the covariance-matrix of an autoregressive error-process. The Törnquist-Egervary formula allows to compute this difference. It turns out that this computation leads to surprisingly simple results which can only be found in some scattered literature (see Graybill [3], p. 286; Nabben [4], p. 298).

2. Autoregressive error-Processes

In this section we follow Schönfeld [6], pp. 152-164. We consider the linear regression model

$$
\begin{equation*}
y_{t}=x_{t}^{\prime} \beta+u_{t}, \quad t=1,2, \ldots, T \tag{2.1}
\end{equation*}
$$

where β is an $k \times 1$ parameter-vector to be estimated and x_{t} is a $k \times 1$ designvector. Thus y_{t} is a random variable and the disturbance-(or error-)term u_{t} is assumed to follow an autoregressive process of the first order

$$
\begin{equation*}
u_{t}=\rho u_{t-1}+\varepsilon_{t}, \quad|\rho|<1 \tag{2.2}
\end{equation*}
$$

for $t=2, \ldots, T$, where $\varepsilon_{t}, t=2, \ldots, T$ are uncorrelated random variables with mean zero and varicance σ^{2}. (2.2) represents an inhomogeneous (stochastic) difference equation which is solved by $u_{t}=c(t) \rho^{t} . c(t)$ must obey the equation

$$
\begin{equation*}
\rho^{t}(c(t)-c(t-1))=\varepsilon_{t}, \quad t=2, \ldots, T \tag{2.3}
\end{equation*}
$$

i. e., $\left.c(t)=c(1)+\sum_{\tau=1}^{t}(c(\tau))-c(\tau-1)\right)=c(1)+\sum_{\tau=2}^{t} \rho^{-\tau} \varepsilon_{\tau}$ and finally

$$
\begin{equation*}
u_{t}=\rho^{t} c(1)+\sum_{\tau=2}^{t} \rho^{t-\tau} \varepsilon_{\tau} \tag{2.4}
\end{equation*}
$$

Since the empty sum equals zero, $c(1)=u_{1} \rho^{-1}$ and thus finally

$$
\begin{equation*}
u_{t}=\rho^{t-1} u_{1}+\sum_{\tau=2}^{t} \rho^{t-\tau} \varepsilon_{\tau} . \tag{2.5}
\end{equation*}
$$

We assume that $E\left(u_{1}\right)=0$ and u_{1} is uncorrelated with the ε_{t}. From this it follows that

$$
\begin{align*}
\operatorname{Var}\left(u_{t}\right) & =\sigma^{2}\left\{\rho^{2(t-1)} \frac{\operatorname{Var}\left(u_{1}\right)}{\sigma^{2}}+\sum_{\tau=2}^{t} \rho^{2(t-\tau)}\right\} \tag{2.6}\\
& =\rho^{2(t-1)} \operatorname{Var}\left(u_{1}\right)+\sigma^{2} \frac{1-\rho^{2(t-1)}}{1-\rho^{2}}
\end{align*}
$$

If we make the assumption "Nature does not jump", i. e. $\operatorname{Var}\left(u_{t}\right)=\operatorname{Var}\left(u_{1}\right)$, we get

$$
\begin{equation*}
\operatorname{Var}\left(u_{1}\right)\left(1-\rho^{2(t-1)}\right)=\frac{\sigma^{2}\left(1-\rho^{2(t-1)}\right)}{1-\rho^{2}} \tag{2.7}
\end{equation*}
$$

i. e. $\operatorname{Var}\left(u_{1}\right)=\frac{\sigma^{2}}{1-\rho^{2}}$. This result can also be obtained in another way. If we assume that $u_{t}=\rho u_{t-1}+\varepsilon_{t}, \quad t \leq T$, i.e., $t=\ldots-n$, $-(n-1), \ldots, 0,1, \ldots, T$, then it follows by mathematical induction that

$$
\begin{equation*}
u_{t}=\sum_{\tau=0}^{\infty} \rho^{\tau} \varepsilon_{t-\tau} . \tag{2.8}
\end{equation*}
$$

From this follows

$$
\begin{equation*}
\operatorname{Var}\left(u_{t}\right)=\operatorname{Var}\left(u_{1}\right)=\sum_{\tau=0}^{\infty} \rho^{2 \tau}=\frac{\sigma^{2}}{1-\rho^{2}}, \tag{2.9}
\end{equation*}
$$

since $|\rho|<1$ has been assumed. An elementary computation also shows that for $s \in \mathbb{N}$:

$$
\begin{equation*}
\operatorname{Cov}\left(u_{t}, u_{t+s}\right)=\frac{\sigma^{2}}{1-\rho^{2}} \rho^{s} . \tag{2.10}
\end{equation*}
$$

Thus

$$
\begin{align*}
\Omega=\operatorname{Cov}\left(u_{1}, \ldots, u_{T}\right)^{\prime} & =\frac{\sigma^{2}}{1-\rho^{2}}\left(\rho^{|i-j|} ; i, j=1, \ldots, T\right) \tag{2.11}\\
& =\sigma_{u}^{2}\left(\rho^{|i-j|} ; i, j=1, \ldots, T\right) .
\end{align*}
$$

The formula for Ω^{-1} can be proved by simple verification. There is, however, also a statistical approach for determining Ω^{-1}. Consider the matrix

$$
B=\left(\begin{array}{ccccc}
1 & & & & 0 \tag{2.12}\\
-\rho & 1 & & & \\
& -\rho & \ddots & \ddots & \\
0 & & & -\rho & 1
\end{array}\right)
$$

Since $\operatorname{det} B=1, B$ is regular and $\operatorname{im} B=\operatorname{im} B \Omega=\mathbb{R}^{T}$. Consequently if $X^{\prime}=\left(x_{1}, \ldots, x_{T}\right)$ and we consider the linear regression model $y=X \beta+u$ the statistic $B y$ is a linearly sufficient statistic (Drygas, 1984) since im $X \subseteq$ $\operatorname{im}\left(\Omega+X X^{\prime}\right) B^{\prime}=\operatorname{im}\left(\Omega+X X^{\prime}\right)=\operatorname{im}(\Omega)+\operatorname{im}(X)$. Now

$$
\begin{equation*}
B y=\left(y_{1}, y_{2}-\rho y_{1}, \ldots, y_{2}-\rho y_{\tau-1}\right)^{\prime}=\left(y_{1}, \tilde{y}_{2}, \ldots, \tilde{y}_{T}\right)^{\prime} \tag{2.13}
\end{equation*}
$$

and

$$
\begin{align*}
& E\left(y_{1}\right)=E\left(x_{1}^{\prime} \beta+u_{1}\right)=x_{1}^{\prime} \beta, \operatorname{Var}\left(y_{1}\right)=\operatorname{Var}\left(u_{1}\right)=\frac{\sigma^{2}}{\left(1-\rho^{2}\right)}, \tag{2.14}\\
& E\left(y_{i}-\rho y_{i-1}\right)=E\left(x_{i}-\rho x_{i-1}+\varepsilon_{i}\right)=x_{i}-\rho x_{i-1}, \tag{2.15}\\
& \operatorname{Var}\left(y_{i}-\rho y_{i-1}\right)=\operatorname{Var}\left(\varepsilon_{i}\right)=\sigma^{2} .
\end{align*}
$$

If we, moreover, replace y_{1} by

$$
\begin{equation*}
\tilde{y}_{1}=\left(1-\rho^{2}\right)^{1 / 2} y_{1}, \tag{2.16}
\end{equation*}
$$

then $\operatorname{Cov}\left(\tilde{y}_{1}, \tilde{y}_{2}, \ldots, \tilde{y}_{t}\right)^{\prime}=\sigma^{2} I_{T}$. Therefore there exist two equivalent possibilities to compute the Gauss-Markov estimator (GME) in the regression model $y=X \beta+u$. Either we can use the Aitken-formula

$$
\begin{equation*}
\hat{\beta}=\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1} y \tag{2.17}
\end{equation*}
$$

or we can use the formula

$$
\begin{equation*}
\hat{\beta}=\left(\tilde{X}^{\prime} \tilde{X}\right)^{-1} \tilde{X}^{\prime} \tilde{y} \tag{2.18}
\end{equation*}
$$

where $E \tilde{y}=\tilde{X} \beta, \quad \tilde{X}^{\prime}=\left(x_{1}\left(1-\rho^{2}\right)^{1 / 2}, x_{i}-\rho x_{i-1}, \quad i=2, \ldots, T\right)$. We specialize to the case $k=1$ and let $X=e_{i}$, the i-th unit-vector. Then

$$
\begin{equation*}
\hat{\beta}=\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1} y=\frac{\sum_{j=1}^{T}\left(\Omega^{-1}\right)_{i, j} y_{j}}{\left(\Omega^{-1}\right)_{i, i}} \tag{2.19}
\end{equation*}
$$

On the other hand for $i=1$

$$
\begin{align*}
& \tilde{X}=\left(\left(1-\rho^{2}\right)^{1 / 2},-\rho, 0, \ldots, 0\right)^{\prime} \tag{2.20}\\
& \tilde{X}=(0, \ldots, 0, \quad 1 \quad,-\rho, 0, \ldots, 0)^{\prime}
\end{align*}
$$

for $i=2, \ldots, T-1$ and finally for $i=N$

$$
\begin{equation*}
\tilde{X}=(0, \ldots, 0,1)^{\prime} \tag{2.22}
\end{equation*}
$$

Thus
(2.23) $\quad \tilde{X}^{\prime} \tilde{X}=1(i=1), \quad \tilde{X}^{\prime} \tilde{X}=1+\rho^{2}(2 \leq i \leq T-1), \quad \tilde{X}^{\prime} \tilde{X}=1(i=T)$,

$$
\begin{equation*}
\left(\tilde{X}^{\prime} X\right)^{-1}=1, i=1, T, \quad\left(\tilde{X}^{\prime} \tilde{X}\right)^{-1}=\frac{1}{1+\rho^{2}}(2 \leq i \leq T-1) \tag{2.24}
\end{equation*}
$$

For $i=1$ we get

$$
\begin{equation*}
y_{1}+\frac{\left(\Omega^{-1}\right)_{1,2} y_{2}}{\left(\Omega^{-1}\right)_{1,1}}=\left(1-\rho^{2}\right) y_{1}-\rho\left(y_{2}-\rho y_{1}\right)=y_{1}-\rho y_{2} \tag{2.25}
\end{equation*}
$$

This implies that the first line of $\left(\Omega^{-1}\right)$ is equal to $\left(\Omega^{-1}\right)_{1,1}(1,-\rho, 0, \ldots, 0)$. Multiplying this with the first column of Ω yields $\left(\Omega^{-1}\right)_{1,1}\left(1-\rho^{2}\right)=1$, i.e., $\left(\Omega^{-1}\right)_{1,1}=\frac{1}{1-\rho^{2}}$. For $i=T$ we get

$$
\begin{equation*}
\sum_{j=1}^{T}\left(\Omega^{-1}\right)_{T, j} y_{j}=\left(\Omega^{-1}\right)_{i, T}\left(y_{T}-\rho y_{T-1}\right) \tag{2.26}
\end{equation*}
$$

i. e., the last line of Ω^{-1} is proportional to $(0, \ldots, 0,-\rho, 1)$ which again yields $\left(\Omega^{-1}\right)_{T, T}=\left(1-\rho^{2}\right)^{-1}$. For $2 \leq i \leq T-1$

$$
\begin{align*}
\sum_{j=1}^{T}\left(\Omega^{-1}\right)_{i, j} y_{j} & =\frac{\left(\Omega^{-1}\right)_{i, i}}{1+\rho^{2}}\left(y_{i}-\rho y_{i-1}-\rho\left(y_{i+1}-\rho y_{i}\right)\right) \tag{2.27}\\
& =\frac{\left(\Omega^{-1}\right)_{i, i}}{1+\rho^{2}}\left[\left(1+\rho^{2}\right) y_{i}-\rho y_{i-1}-\rho y_{i+1}\right]
\end{align*}
$$

Thus the i-th line of Ω^{-1} is proportional to $\left(0, \ldots,-\rho, 1+\rho^{2},-\rho, 0, \ldots, 0\right)$.
The constant $\left(\Omega^{-1}\right)_{i, i}$ must be found from the equation

$$
\begin{array}{r}
\frac{\left(\Omega^{-1}\right)_{i, i}}{1+\rho^{2}}\left(\left(1+\rho^{2}\right)-2 \rho^{2}\right)=\frac{\left(\Omega^{-1}\right)_{i, i}}{1+\rho^{2}}\left(1-\rho^{2}\right)=1 \\
\left(\Omega^{-1}\right)_{i, i}=\frac{1+\rho^{2}}{1-\rho^{2}} \tag{2.28}
\end{array}
$$

and the i-th line of Ω^{-1} is equal to

$$
\begin{equation*}
\frac{1}{1-\rho^{2}}\left(0, \ldots,-\rho, 1+\rho_{(i)}^{2},-\rho, \ldots, 0\right) \tag{2.29}
\end{equation*}
$$

3. CUBIC EQUIDISTANT SPLINES

Consider the interval $[0,1]$ and the points

$$
\begin{equation*}
x=0, \quad x_{k}=\frac{k}{n}, \quad k=1,2, \ldots, n-1, \quad x_{n}=1 \tag{3.1}
\end{equation*}
$$

$f(x), x \in[0,1]$ is called a cubic spline if

$$
\begin{equation*}
f(x)=\sum_{j=0}^{3} a_{j}^{(k)}\left(x-x_{k}\right)^{j}, \quad x_{b} \leq x \leq x_{k+1}, \quad k=0,1,2, \ldots, n-1 \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(x_{k}\right)=y_{k}, \quad k=0, \ldots, n \tag{3.3}
\end{equation*}
$$

where the $y_{k}=g\left(x_{k}\right)$ is a given function. $f(x)$ is considered as an interpolation of $g(x)$. Moreover, it is required that $f(x)$ is twice continuously differentiable. Let $f^{\prime \prime}\left(x_{k}\right)=M_{k}$. The M_{k} are called moments. Then $M_{k}, k=1, \ldots, n-1$, obeys the equation

$$
\left(\begin{array}{lllll}
4 & 1 & & & \tag{3.4}\\
1 & 4 & 1 & & \\
141 & & & \\
& & & & \\
& & & \\
0 & & & 141 \\
& & & & 1
\end{array}\right)\left(\begin{array}{c}
M_{1} \\
\vdots \\
\vdots \\
\vdots \\
M_{n-1}
\end{array}\right)=\left(\begin{array}{c}
V_{1} \\
\vdots \\
\vdots \\
\vdots \\
V_{n-1}
\end{array}\right)
$$

where V_{1}, \ldots, V_{n-1} are linear functions of y_{i} (see Schwarz [7], p. 125, Stoer [8], p. 81, Törnig/Spellucci [9], p. 77). The matrix

$$
A=\left(\begin{array}{llll}
41 & & & 0 \tag{3.5}\\
141 & & & \\
& & \ddots & \\
& & & 141 \\
0 & & 14
\end{array}\right)
$$

is a tridiagonal matrix. Usually the equation system $A m=v$ is solved by representing A as a product of two bidiagonal matrices (see Schwarz [7]). For example

$$
\left(\begin{array}{lll}
4 & 1 & 0 \tag{3.6}\\
1 & 4 & 1 \\
0 & 1 & 4
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{4} & 1 & 0 \\
0 & \frac{4}{15} & 1
\end{array}\right)\left(\begin{array}{lll}
4 & 1 & 0 \\
0 & \frac{15}{4} & 1 \\
0 & 0 & \frac{56}{15}
\end{array}\right)
$$

and therefore

$$
\begin{align*}
\left(\begin{array}{lll}
4 & 1 & 0 \\
1 & 4 & 1 \\
0 & 1 & 4
\end{array}\right)^{-1} & =\left(\begin{array}{rrr}
\frac{1}{4} & -\frac{1}{15} & \frac{1}{56} \\
0 & \frac{4}{15} & -\frac{1}{14} \\
0 & 0 & \frac{15}{56}
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & 0 \\
-\frac{1}{4} & 1 & 0 \\
\frac{1}{15} & -\frac{4}{15} & 1
\end{array}\right) \tag{3.7}\\
& =\frac{1}{56}\left(\begin{array}{rrr}
15 & -4 & 1 \\
-4 & 16 & -4 \\
1 & -4 & 15
\end{array}\right)
\end{align*}
$$

However, A is very similar to Ω^{-1} and therefore there might be an explicit formula for A^{-1} which may perhaps also be convenient from the computational point of view. As shown in the introduction

$$
A=\frac{1-\rho^{2}}{(-\rho)}\left(\begin{array}{cccc}
\frac{1+\rho^{2}}{1-\rho^{2}} & \frac{-\rho}{\left(1-\rho^{2}\right)} & & 0 \tag{3.8}\\
\frac{-\rho}{\left(1-\rho^{2}\right)} & \frac{1+\rho^{2}}{1-\rho^{2}} & \frac{-\rho}{1-\rho^{2}} & \\
0 & & \ddots & \\
0 & & \frac{-\rho}{1-\rho^{2}} & \frac{1+\rho^{2}}{1-\rho^{2}}
\end{array}\right)
$$

where $\rho=-2+\sqrt{3}$. Thus

$$
A=\frac{\left(1-\rho^{2}\right)}{-\rho}\left\{\Omega^{-1}+\frac{\rho^{2}}{1-\rho^{2}}\left(\begin{array}{cc}
1 & 0 \tag{3.9}\\
\vdots & \vdots \\
0 & 1
\end{array}\right)\binom{1 \cdots \cdots 0}{0 \cdots \cdots \cdot 1}\right\}
$$

If we apply the well-known Törnquist-Egervary formula

$$
\begin{equation*}
(B+C D)^{-1}=B^{-1}-B^{-1} C\left(I+D B^{-1} C\right)^{-1} D B^{-1} \tag{3.10}
\end{equation*}
$$

we can find an explicit formula for A^{-1}. This is done in the next section.

4. The inversion of some tridiagonal matrices

We consider matrices of the form

$$
A=\left(\begin{array}{lllll}
\beta 1 & & & & \tag{4.1}\\
1 \beta & 1 & & & 0 \\
& & \ddots & \\
& & & & \\
& & & & \\
& & & 1 & \beta
\end{array}\right)
$$

where $\beta \in \mathbb{C}$ and $\rho=-\frac{\beta}{2}+\frac{1}{2} \sqrt{\beta^{2}-4}$. If $\beta \in \mathbb{R}$ and $\beta^{2}>4$, then $|\rho|<1$. If $\beta^{2}<4$, then $\rho \in \mathbb{C}$ and $|\rho|=1$. Special attention will be paid to the cases $\rho^{2}=1$ and $\rho^{2(n+1)}=1$ because in these cases the derived formulae may not be valid. The case $\beta=4$ is needed in spline interpolation. We denote the matrix A in (4.1) by $A_{n}(\beta)$.

Theorem 4.1. Let $A=A_{n}(\beta)$. Then

$$
\begin{equation*}
A_{n}(\beta)=\frac{1-\rho^{2}}{(-\rho)}\left\{\Omega^{-1}+\frac{\rho^{2}}{1-\rho^{2}}\left(e_{1} e_{n}\right)\left(e_{1}, e_{n}\right)^{\prime}\right\} \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(A_{n}(\beta)\right)^{-1}=\left(b_{i j}\right) \tag{4.3}
\end{equation*}
$$

$$
\begin{equation*}
b_{i j}=\frac{-\rho^{i-j+1}\left(1-\rho^{2 j}\right)\left(1-\rho^{2(n-i+1)}\right)}{\left(1-\rho^{2}\right)\left(1-\rho^{2(n+1)}\right)} \tag{4.4}
\end{equation*}
$$

if $i \geq j$ and $\rho^{2} \neq 1, \rho^{2(n+1)} \neq 1$. If $j \geq i$ then $b_{i j}=b_{j i}$ as above. This result is correct for $n \geq 2$.

Proof. According to (3.10) we have to compute

$$
\begin{equation*}
\left(I_{2}+C \Omega D\right)^{-1} \tag{4.5}
\end{equation*}
$$

where $C=\frac{\rho^{2}}{1-\rho^{2}} D^{\prime}, D=\left(e_{1}, e_{n}\right)^{\prime}, e_{i}$ the i-th unit-vector. We get

$$
\begin{align*}
\left(I_{2}+C \Omega D\right) & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\frac{\rho^{2}}{1-\rho^{2}}\left(\begin{array}{cc}
1 & 0 \\
\vdots & 0 \\
0 & 1
\end{array}\right) \Omega\binom{1 \cdots}{0 \cdots 1} \\
& =I_{2}+\frac{\rho^{2}}{1-\rho^{2}}\left(\begin{array}{cc}
1 & \rho^{n-1} \\
\rho^{n-1} & 1
\end{array}\right) \tag{4.6}\\
& =\frac{1}{1-\rho^{2}}\left(\begin{array}{cc}
1 & \rho^{n+1} \\
\rho^{n+1} & 1
\end{array}\right)
\end{align*}
$$

$$
\left(I_{2}+\frac{\rho^{2}}{1-\rho^{2}} D \Omega D\right)^{-1}=\frac{1-\rho^{2}}{\left(1-\rho^{2(n+1)}\right)}\left(\begin{array}{cc}
1 & -\rho^{n+1} \tag{4.7}\\
-\rho^{n+1} & 1
\end{array}\right) .
$$

From $\Omega\left(\begin{array}{cc}1 & 0 \\ \vdots & \vdots \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}1 & \rho^{n-1} \\ \vdots & \vdots \\ \rho^{n-1} & 1\end{array}\right)$ it follows that

$$
\frac{\rho^{2}}{1-\rho^{2}} \Omega D^{\prime}\left(I_{2}+\frac{\rho^{2}}{1-\rho^{2}} D^{\prime} \Omega D\right)^{-1} D \Omega=
$$

$$
=\frac{\rho^{2}}{1-\rho^{2(n+1)}}\left(\begin{array}{cc}
1-\rho^{2 n} & \rho^{n-1}-\rho^{n+1} \tag{4.8}\\
\vdots & \vdots \\
\rho^{i-1}-\rho^{2 n-(i-1)} & \rho^{n-i}-\rho^{n+i} \\
\vdots & \vdots \\
\rho^{n-1}-\rho^{n+1} & \rho^{n}-\rho^{2 n}
\end{array}\right)\binom{1 \cdots \rho^{n-1}}{\rho^{n-1} \cdots 1} .
$$

We have compute the inner product of the i-th row of the left hand matrix with the j-th column of the right hand matrix. This yields

$$
\begin{align*}
& \left(\rho^{i-1}-\rho^{2 n-(i-1)}\right) \rho^{j-1}+\left(\rho^{n-i}-\rho^{n+i}\right) \rho^{n-j}= \\
& =\rho^{i+j-2}-\rho^{2 n-i+j}+\rho^{2 n-i-j}-\rho^{2 n+i-j} \tag{4.9}
\end{align*}
$$

Thus

$$
\begin{align*}
& A^{-1}= \tag{4.10}\\
& =\frac{(-\rho)}{1-\rho^{2}}\left\{\rho^{|i-j|}-\frac{\rho^{2}}{1-\rho^{2(n+1)}}\left[\rho^{i+j-2}+\rho^{2 n-(i+j)}-\rho^{2 n-i+j}-\rho^{2 n+i-j}\right]\right\}
\end{align*}
$$

We now consider the case $i \geq j$ - no restriction in view of symmetry. We get

$$
\begin{align*}
b_{i j} & =\frac{(-\rho)}{1-\rho^{2}} \frac{1}{1-\rho^{2(n+1)}}\left\{\rho^{i-j}\left(1-\rho^{2(n+1)}\right)\right\}-\rho^{i+j}-\rho^{2(n+1)-(i+j)} \\
& \quad+\rho^{2(n+1)-i+j}+\rho^{2(n+1)-j+i} \\
= & \frac{(-\rho)}{1-\rho^{2}} \frac{1}{1-\rho^{2(n+1)}}\left\{\rho^{i-j}-\rho^{i+j}-\rho^{2(n+1)-(i+j)}-\rho^{2(n+1)-i+j}\right\} \\
& =\frac{-\rho}{\left(1-\rho^{2}\right)} \frac{1}{\left(1-\rho^{2(n+1)}\right)}\left(\rho^{i-j}-\rho^{i+j}\right) \tag{4.11}\\
& =\frac{-\rho}{1-\rho^{2}} \frac{\rho^{i-j}\left(1-\rho^{2 j}\right)\left(1-\rho^{2(n-i+1)}\right)}{1-\rho^{2(n+1)}} \\
& =-\frac{\rho^{i-j+1}\left(1-\rho^{2 j}\right)\left(1-\rho^{2(n-i+1)}\right)}{\left(1-\rho^{2}\right)\left(1-\rho^{2(n+1)}\right)}
\end{align*}
$$

The theorem is not valid for $n=1$, but if $n=1$ and hence $i=j=1$ then

$$
\begin{gather*}
-\frac{\rho^{i-j+1}\left(1-\rho^{2 j}\right)\left(1-\rho^{2(n-i+1)}\right)}{\left(1-\rho^{2}\right)\left(1-\rho^{2(n+1)}\right)}= \tag{4.12}\\
=-\rho \frac{\left(1-\rho^{2}\right)}{1-\rho^{4}}=\frac{-\rho}{1+\rho^{2}}=\frac{-\rho}{-\beta \rho}=\frac{1}{\beta} .
\end{gather*}
$$

Thus the formula is also correct for $n=1$. We prove the theorem again by additionally slightly generalizing it. If

$$
A=\left(\begin{array}{ccccc}
\beta & \alpha & & & 0 \tag{4.13}\\
\gamma & \ddots & \ddots & & \\
& \ddots & \ddots & \ddots & \alpha \\
0 & & \ddots & \gamma & \beta
\end{array}\right)=A_{u(\alpha, \beta, \gamma)}
$$

and $\alpha, \gamma \neq 0$ (The case $\alpha=0$ or $\gamma=0$ leads to a bidiagonal matrix easily invertible.), then

$$
\begin{equation*}
A_{n}(\alpha, \beta, \gamma)=\sqrt{\alpha \gamma} A_{n}\left(\sqrt{\frac{\alpha}{\gamma}}, \frac{\beta}{\sqrt{\alpha \gamma}}, \sqrt{\frac{\gamma}{\alpha}}\right) \tag{4.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(A_{n}(\alpha, \beta, \gamma)\right)^{-1}=(\alpha \gamma)^{-\frac{1}{2}} A_{n}^{-1}\left(\sqrt{\frac{\alpha}{\gamma}}, \frac{\beta}{\sqrt{\alpha \gamma}}, \sqrt{\frac{\gamma}{\alpha}}\right) \tag{4.15}
\end{equation*}
$$

Thus it is no restriction to assume that $\alpha \gamma=1$.
Theorem 4.2. Let $A=A_{n}(\alpha, \beta, \gamma)$, where $\alpha \gamma=1$. Then $A^{-1}(\alpha, \beta, \gamma)=$ $\left(b_{i j}\right)$ and

$$
\begin{equation*}
b_{i j}=\frac{-\alpha^{i-j} \rho^{i-j+1}\left(1-\rho^{2 j}\right)\left(1-\rho^{2(n-i+1)}\right)}{\left(1-\rho^{2}\right)\left(1-\rho^{2(n+1)}\right)}, i \geq j \tag{4.16}
\end{equation*}
$$

where $\rho^{2}+\beta \rho+1=0$. If $i \leq j$, then

$$
\begin{equation*}
b_{i j}=\frac{-\gamma^{j-i} \rho^{j-i+1}\left(1-\rho^{2 j}\right)\left(1-\rho^{2(n-j+1)}\right)}{\left(1-\rho^{2}\right)\left(1-\rho^{2(n+1)}\right)} . \tag{4.17}
\end{equation*}
$$

Proof. Only the case $i \geq j$ must be considered, since the case $j \leq i$ follows by transposition. The proof for $i \geq j$ is done by mathematical induction. For $n=1$

$$
\begin{equation*}
b_{11}=-\rho \frac{\left(1-\rho^{2}\right)}{\left(1-\rho^{4}\right)}=\frac{-\rho}{1+\rho^{2}}=\frac{-\rho}{-\beta \rho}=+\frac{1}{\beta} \tag{4.18}
\end{equation*}
$$

if $\beta \neq 0$, i. e., $A_{1}(\alpha, \beta, \gamma)$ is invertible. We now assume that the formula is correct for n and we use the formula (see Rao [5], p. 33)

$$
\begin{align*}
& \left(\begin{array}{ccc}
A_{n} & \vdots & \alpha e_{n} \\
\cdots \cdots \cdots \cdots \cdots \cdots \\
\gamma e_{n}^{\prime} & \vdots & \beta
\end{array}\right)^{-1}= \tag{4.19}\\
& =\left(\begin{array}{cccc}
A_{n}^{-1}+A_{n}^{-1} \alpha e_{n} E_{n}^{-1} \gamma e_{n}^{\prime} A_{n}^{-1} & \vdots & -\alpha A_{n}^{-1} e_{n} E_{n}^{-1} \\
\cdots \\
\quad-E_{n}^{-1} \gamma e_{n}^{\prime} A_{n}^{-1} & \vdots & E_{n}^{-1}
\end{array}\right)
\end{align*}
$$

where $E_{n}=\beta-\alpha \gamma e_{n}^{\prime} A_{n}^{-1} e_{n}=\beta-e_{n}^{\prime} A_{n}^{-1} e_{n}$ (Schur-complement). By assumption

$$
\begin{equation*}
e_{n}^{\prime} A_{n}^{-1} e_{n}=\frac{-\rho}{1-\rho^{2}} \frac{\left(1-\rho^{2 n}\right)\left(1-\rho^{2}\right)}{\left(1-\rho^{2(n+1)}\right)}=\frac{-\rho\left(1-\rho^{2 n}\right)}{\left(1-\rho^{2(n+1)}\right)} \tag{4.20}
\end{equation*}
$$

Thus

$$
\begin{align*}
E_{n} & =\frac{\beta\left(1-\rho^{2(n+1)}+\rho\left(1-\rho^{2 n}\right)\right)}{\left(1-\rho^{2(n+1)}\right)} \\
& =\frac{-\rho^{2 n+1}(1+\beta \rho)+\beta+\rho}{\left(1-\rho^{2(n+1)}\right)}=\frac{\rho^{(2 n+1)} \rho^{2}+\beta+\rho}{\left(1-\rho^{2(n+1)}\right)} \tag{4.21}\\
& =\frac{\rho^{2 n+3}-\rho^{-1}}{\left(1-\rho^{2(n+1)}\right)}=\frac{-\rho^{-1}\left(1-\rho^{2(n+2)}\right)}{\left(1-\rho^{2(n+1)}\right)}
\end{align*}
$$

since $\rho^{2}=-(1+\beta \rho),(\beta+\rho) \rho=\rho^{2}+\beta \rho=-1$ and finally

$$
\begin{equation*}
E_{n}^{-1}=-\frac{\rho\left(1-\rho^{2(n+1)}\right)}{1-\rho^{2(n+2)}} \tag{4.22}
\end{equation*}
$$

This finishes the induction-proof in the case of the $(n+1, n+1)$ th element of $A_{n+1}(\alpha, \beta, \gamma)$. Since

$$
\left(A_{n}^{-1} e_{n}\right)_{j}=-\frac{\alpha^{n-j} \rho^{n-j+1}\left(1-\rho^{2 j}\right)}{\left(1-\rho^{2(n+1))}\right.}
$$

it follows that

$$
\begin{align*}
& -\alpha\left(A_{n}^{-1} e_{n}\right)_{j} E_{n}^{-1}=\left(A_{n+1}^{-1}\right)_{j, n+1}= \\
= & \frac{-\alpha^{(n+1)-j} \rho^{(n+1-j+1)}\left(1-\rho^{2 j}\right)}{\left(1-\rho^{2(n+2)}\right)} \tag{4.23}
\end{align*}
$$

This is the desired formula with n replaced by $n+1$. Similarly follows from

$$
\begin{equation*}
\left(e_{n}^{\prime} A_{n}^{-1}\right)_{i}=\frac{-\gamma^{n-i} \rho^{n-i+1}\left(1-\rho^{2 i}\right)}{\left(1-\rho^{2(n+1)}\right)} \tag{4.24}
\end{equation*}
$$

that

$$
\begin{equation*}
-\gamma\left(e_{n}^{\prime} A_{n}^{-1}\right)_{i}=\frac{-\gamma^{n+1-i} \rho^{n+1-i+1}\left(1-\rho^{2 i}\right)}{\left(1-\rho^{2(n+1)}\right)} \tag{4.25}
\end{equation*}
$$

i. e., the formula with n replaced by $n+1$. Finally for $i \geq j$ we compute

$$
\begin{aligned}
C & =\frac{-\alpha^{i-j} \rho^{i-j+1}\left(1-\rho^{2 j}\right)\left(1-\rho^{2(n-i+2)}\right)}{\left(1-\rho^{2(n+2)}\right)\left(1-\rho^{2}\right)} \\
& -\frac{-\rho^{i-j} \rho^{i-j+1}\left(1-\rho^{2(n-i+1)}\right)\left(1-\rho^{2 j}\right)}{\left(1-\rho^{2(n+1)}\right)\left(1-\rho^{2}\right)}
\end{aligned}
$$

The first term is asserted to be $\left.\left(A_{n+1}^{-1}\right)_{i, j}\right)$, while the second term is $\left(A_{n}^{-1}\right)_{i, j}$. We have to show that

$$
\begin{aligned}
C & =\left(A_{n}^{-1}\right)_{i, j}\left(A_{n}^{-1}\right)_{i, n} E_{n}^{-1} \\
& =\frac{-\alpha^{n-j} \rho^{n-j+1}\left(1-\rho^{2 j}\right)\left(1-\rho^{2}\right) \gamma^{n-i}\left(1-\rho^{2 i}\right)\left(1-\rho^{2}\right) \rho^{n-i+1} \rho}{\left(1-\rho^{2}\right)\left(1-\rho^{2(n+1)}\right)\left(1-\rho^{2(n+2)}\right)\left(1-\rho^{2}\right)} \\
& =\frac{\left(\alpha^{i-j} \rho^{i-j+1}\right) \rho^{2(n-i+1)}\left(1-\rho^{2 i}\right)\left(1-\rho^{2 j}\right)\left(1-\rho^{2}\right)}{\left(1-\rho^{2}\right)\left(1-\rho^{2(n+1)}\right)\left(1-\rho^{2(n+2)}\right)}
\end{aligned}
$$

By shortening common factors we have to show that

$$
\begin{align*}
D & =\left(1-\rho^{2(n-i+2)}\right)\left(1-\rho^{2(n+1)}\right)-\left(1-\rho^{2(n-i+1)}\right)\left(1-\rho^{2(n+2)}\right) \\
& =\rho^{2(n-i+1)}\left(1-\rho^{2 i}\right)\left(1-\rho^{2}\right) \tag{4.28}
\end{align*}
$$

A simple algebraic manipulation shows that this indeed true. A similar argument holds for $i \leq j$.

A still simpler representation of A^{-1} is possible. Since $\rho^{2}=-(\beta \rho+1), \rho^{n}=$ $a_{n}+b_{n} \rho$ for some $a_{n}, b_{n} \in \mathbb{C}$. Now $\rho^{n+1}=a_{n} \rho+b_{n} \rho^{2}=a_{n+1}+b_{n+1} \rho=$ $a_{n} \rho-b_{n}(\beta \rho+1)=\left(a_{n}-\beta b_{n}\right) \rho-b_{n}$. Thus a_{n+1} can be chosen equal to $-b_{n}$, while b_{n+1} can be chosen equal to $a_{n}-\beta b_{n}=-\left(b_{n-1}+\beta b_{n}\right)$. We get therefore the difference-equation

$$
\begin{equation*}
b_{n+1}+\beta b_{n}+b_{n-1}=0 \tag{4.29}
\end{equation*}
$$

Obiously, $b_{0}=0, a_{0}=1, b_{1}=1, a_{1}=-b_{0}=0$. Before formulating the next theorem we note that $\rho \neq 0$.

Theorem 4.3. $b_{n}=\frac{\left(1-\rho^{2 n}\right) \rho^{-(n-1)}}{1-\rho^{2}}, \quad n=0,1,2, \ldots$
Proof. This formula is correct for $n=0,1$ and if it is correct for $n-1$ and n, then

$$
\begin{aligned}
b_{n+1} & =-\left(\beta b_{n}+b_{n-1}\right) \\
& =\frac{-1}{1-\rho^{2}}\left(\beta\left(1-\rho^{2 n}\right) \rho^{-(n-1)}+\left(1-\rho^{2(n-1)}\right) \rho^{-(n-2)}\right) \\
& =\frac{-\rho^{-(n-1)}}{1-\rho^{2}}\left(\left(1-\rho^{2 n}\right) \beta+\left(1-\rho^{2(n-1)}\right) \rho\right) \\
& =\frac{-\rho^{-(n-2)}}{1-\rho^{2}}\left((\beta+\rho)-\rho^{2 n-1}(\beta \rho+1)\right) \\
& =\frac{\rho^{-(n-1)}}{1-\rho^{2}}\left(\rho^{-1}-\rho^{2 n+1}\right) \\
& =\frac{\rho^{-(n-1)} \rho^{-1}}{1-\rho^{2}}\left(1-\rho^{2(n+1)}\right) \\
& =\frac{\rho^{-n}}{1-\rho^{2}}\left(1-\rho^{2(n+1)}\right) .
\end{aligned}
$$

Corollary 4.4. $A^{-1}=\left(b_{i j}\right)$, where

$$
\begin{align*}
& b_{i j}=-\alpha^{i-j} \frac{b_{j} b_{n-i+1}}{b_{n+1}}, \quad i \geq j, \\
& b_{i j}=-\gamma^{j-i} \frac{b_{i} b_{n-j+1}}{b_{n+1}}, \quad j \geq i . \tag{4.31}
\end{align*}
$$

Proof. Since $b_{j}=\frac{\left(1-\rho^{2 j}\right) \rho^{-(j-1)}}{1-\rho^{2}}$,

$$
\begin{equation*}
b_{n-i+1}=\frac{\left(1-\rho^{2(n-i+1)}\right)}{1-\rho^{2}} \rho^{-(n-i)}, \tag{4.32}
\end{equation*}
$$

and finally

$$
b_{n+1}=\frac{1-\rho^{2(n+1)}}{1-\rho^{2}} \rho^{-n},
$$

the Corollary follows immediately from Theorem 4.1.

The formulae given by Corollyry 4.4 are even simpler then the result of Theorem 4.1 and Theorem 4.2. However, the b_{k} may be very large numbers which can cause inaccuracies in a numerical result. The adventage of Theorem 4.1 and Theorem 4.2 lies in the fact that only small numbers of $[-1,1]$ must be multiplied.

Example 4.5. Let again $n=3$ and $\beta=4, \alpha=\gamma=1$. Then $b_{0}=0, b_{1}=$ $1, b_{2}=-4, b_{3}=15, b_{4}=-56$ and

$$
\left(\begin{array}{lll}
4 & 1 & 0 \\
1 & 4 & 1 \\
0 & 1 & 4
\end{array}\right)^{-1}=\frac{-1}{b_{4}}\left(\begin{array}{lll}
b_{3} & b_{2} & b_{1} \\
b_{2} & b_{2}^{2} & b_{2} \\
b_{1} & b_{2} & b_{3}
\end{array}\right)=\frac{1}{56}\left(\begin{array}{rrr}
15 & -4 & 1 \\
-4 & 16 & -4 \\
1 & -4 & 15
\end{array}\right)
$$

Remark 4.6. We did not yet discuss the case $\rho^{2}=1$ or $\rho^{2(n+1)}=1$. If $\rho^{2}=$ 1 , than $\rho=+1$ and $\rho=-1$, respectively, while $b_{n}=n$ and $b_{n}=(-1)^{n} n$, respectively. It turns out that the formulae of Theorem 4.1 and 4.2 are still correct in the sense that we pass to the limit $\rho^{2} \rightarrow 1$ (Drygas [2]).

In a subsequent paper it will be shown that if $\rho^{2} \neq 0$ then $b_{n}=0$ is equivalent to $\rho^{2(n+1)}=1$. It is not hard to prove that $\operatorname{det}\left(A_{n}(\alpha, \beta, \gamma)\right)=$ $(-1)^{n} b_{n+1}$. Therefore the formulae of Theorems 4.1 and 4.2 apply in all cases when A^{-1} exists.

Acknowledgement

This work started when the author attended the 8th International Workshop in Mathematics in Gronów, 25.-29.9.2000, organized by Instytut Matematyki, Politechnika Zielonogórska/Polska. I am greatly indebted to the organizers of the conference for their invitation. I also thank Dr. Mustapha Ayaita from Kassel for his assistance during the preparation of this manuscript.

References

[1] H. Drygas, Sufficiency and completeness in the general Gauss-Markov model. Sankhya Ser A 45 (1984), 88-98.
[2] H. Drygas, The inverse of a tridiagonal matrix. Kasseler Mathematische Schriften, forthcoming (2003).
[3] F. Graybill, Matrices with Applications in Statistics. Wadsworth \& Brooks/Cole, Advanced Books \& Software, Pacific Grove, California 1963.
[4] R. Nabben, Two sided formels on the inverses of diagonally dominant tridiagonal matrices. Linear Algebra and its Applications 287 (1999), 289-305.
[5] C.R. Rao, Linear statistical inference and its applications. John Wiley \& Sons Inc., New York-London-Sydney-Toronto 1973.
[6] P. Schönfeld, Methoden der Ökonometrie. Band I, Verlag Franz Vahlen GmbH, Berlin und Frankfurt am Main 1969.
[7] H.R. Schwarz, Numerische Mathematik. R.G. Teubner-Verlag, Stuttgart 1988.
[8] J.Stoer, Numerische Mathematik 1. 5. Auflage, Springer-Verlag, Berlin Heidelberg New York London Paris Tokyo Hong Kong 1989.
[9] W. Törnig, P. Spellucci, Numerische Mathematik für Ingenieure und Physiker. Band 2: Numerische Methoden der Analysis. Springer Verlag, Berlin Heidelberg New York London Paris Tokyo Hong Kong 1990.

Received 10 February 2003

