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Abstract

In this paper we consider and compare several approximate meth-
ods for making small-sample statistical inference on the common mean
in the heteroscedastic one-way random effects model. The topic of the
paper was motivated by the problem of interlaboratory comparisons
and is also known as the (traditional) common mean problem. It is
also closely related to the problem of multicenter clinical trials and
meta-analysis. Based on our simulation study we suggest to use the
approach proposed by Kenward & Roger (1997) as an optimal choice
for construction of the interval estimates of the common mean in the
heteroscedastic one-way model.
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1. Introduction

In many applications the researcher has to make inference on the common
overall effect (i.e. the common mean or the consensus mean) based on several
experiments or samples. The topic of this paper was motivated by the prob-
lem of interlaboratory comparisons and is also known as the (traditional)
common mean problem.

Consider that the measurements on virtually the same object of in-
terest are made by k ≥ 2 laboratories. The i-th laboratory repeats its
measurements ni times, ni ≥ 2. The laboratories may exhibit the between
laboratory variability, as well as possibly heterogeneous within-laboratory
variances (i.e. the case of heteroscedasticity of measurement errors). In this
paper we will assume that the measurements follow normal distribution.

The results of typical interlaboratory studies are presented in Table 1
and Table 2, for more details see also Eberhardt, Reeve & Spiegelman (1989)
and Rukhin & Vangel (1998).

Table 1. Selenium in non-fat milk powder data.

Method ȳi s2
i ni Method ȳi s2

i ni

A 105.00 85.711 8 C 109.50 2.729 14

B 109.75 20.748 12 D 113.25 33.640 8

Table 2. Arsenic in oyster tissue data.

Lab ȳi

√
s2
i ni Lab ȳi

√
s2
i ni Lab ȳi

√
s2
i ni

1 9.78 0.30 5 11 13.08 0.43 5 21 13.94 0.15 5

2 10.18 0.46 5 12 13.30 0.16 5 22 13.98 0.80 5

3 10.35 0.04 2 13 13.46 0.21 5 23 14.22 0.88 5

4 11.60 0.78 5 14 13.48 0.41 5 24 14.60 0.43 5

5 12.01 2.62 5 15 13.48 0.47 5 25 14.68 0.33 5

6 12.26 0.83 5 16 13.55 0.06 5 26 15.00 0.71 5

7 12.88 0.59 5 17 13.61 0.36 5 27 15.08 0.18 5

8 12.88 0.29 5 18 13.78 0.61 5 28 15.48 1.64 5

9 12.96 0.52 5 19 13.82 0.33 5

10 13.00 0.86 5 20 13.86 0.28 5
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For analysis of such data we will consider here the one-way random effects
model, which, in general, can be heteroscedastic and unbalanced:

Yij = µ + bi + εij .(1)

Here µ is the true, however unknown, measured value of the quantity of
interest – the common mean, bi are the random laboratory effects (biases)
and εij ∼ N(0, σ2

i ), i = 1, . . . , k, j = 1, . . . , ni, are mutually independent
errors. The result of the (i, j)-th measurement is yij – the realization of the
random variable Yij . We will also use the following notation:

Ȳi =
1

ni

ni∑

j=1

Yij and S2
i =

1

(ni − 1)

ni∑

j=1

(Yij − Ȳi)
2,(2)

the sample laboratory means and the sample laboratory variances, and their
realized values ȳi and s2

i , i = 1, . . . , k.

In the setup of the traditional common mean problem, it is assumed
that bi ∼ N(0, σ2

B) are mutually independent and independent with all
εij . The variance components σ2

i , i = 1, . . . , k, and σ2
B are the nuisance

parameters – the within laboratory and the between laboratory variances,
respectively.

In particular situation the researcher can assume that the between lab-
oratory variability can be neglected, that is σ2

B = 0, i.e.

Yij = µ + εij ,(3)

with εij ∼ N(0, σ2
i ) for i = 1, . . . , k and j = 1, . . . , ni.

One possibility to check that the between laboratory variance can be
neglected is to test the null hypothesis H0 : σ2

B = 0 against the one-sided
alternative H1 : σ2

B > 0 in the model (1), or to construct the interval
estimate for σ2

B.

If the variance components σ2
B and σ2

i were known, the optimal estima-
tor for the unknown common mean µ would be the generalized least squares
estimator (GLS estimator) which is under the given assumptions MVUE —
minimum variance unbiased estimator, see e.g. Searle, Casella & McCulloch
(1992), that is
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µ̂(GLS) =

∑k
i=1 wiȲi∑k
i=1 wi

.(4)

Here wi = 1/Var(Ȳi) with Var(Ȳi) = σ2
B + σ2

i /ni, i.e. µ̂(GLS), the optimal
estimator of µ, is the weighted average of k laboratory average values Ȳi

with the weights wi inversely proportional to the variances of the individual
laboratory averages. Under given assumptions the exact distribution of the
estimator is known:

µ̂(GLS) ∼ N(µ,Φ),(5)

where Φ = 1/wΣ and wΣ =
∑k

i=1 wi. From that the standard statistical
inference on µ could be performed.

If the variance components are unknown, the situation becomes more
complicated. The natural idea, frequently used by researchers, is to esti-
mate the unknown variance components σ2

B and σ2
i , then to plug-in those

estimates into (4) and get the two-stage estimate ˆ̂µ of the common mean µ.
Natural estimators of variance components which could be considered are
the ML or REML estimators, or other type of estimators, which are com-
putationally more simple than the MLEs (e.g. Mandel-Paule estimators,
MINQUEs or other quadratic estimators).

In order to construct an approximate interval estimate the researcher is
typically assuming that approximately the following distributional property
holds true:

ˆ̂µ
appr.∼ N(µ, Φ̂),(6)

where Φ̂ = 1/
∑k

i=1 ŵi, ŵi = 1/(σ̂2
B + σ̂2

i /ni), and σ̂2
B and σ̂2

i are (consistent)
estimators of the variance components σ2

B and σ2
i . Then the approximate

(1 − α) × 100% confidence interval for the common mean µ is given by

ˆ̂µ ± z(1 − α/2)

√
Φ̂,(7)

where z(1 − α/2) is the (1 − α/2)-quantile of standard normal distribution.
It was proved by several simulation studies, that the variance of the two-
stage (or plug-in) estimator ˆ̂µ is underestimated by Φ̂, and as such, the
interval estimate based on (7) leads to too narrow confidence intervals for
the parameter of interest — the common mean µ.
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In Figure 1 the empirical coverage probabilities of the nominal 95% inter-
val estimator (7), calculated with the Mandel-Paule estimates of variance
components, are presented for different situations. For more details on the
design of the simulation study see the Appendix A. As expected, in all con-
sidered situations the empirical coverage probabilities are bellow the nominal
95% level.
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Figure 1. The empirical coverage probabilities of the 95% confidence inter-

vals (7) calculated with the Mandel-Paule estimates of variance

components, based on 10,000 Monte Carlo runs for each specific

design as specified in the Appendix A. Here we use the symbol 5
for designs with σ2

k
= 1, 2 for designs with σ2

k
= 2, 3 for designs

with σ2

k
= 3, and © for designs with σ2

k
= 4. The solid line shows

the nominal 95% level.

As pointed in Rukhin & Vangel (1998): A question of fundamental impor-

tance in the analysis of such data is how to form the best estimate of the
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common mean, and what uncertainty to attach to this estimate. The prob-
lem is not new in statistical literature, see e.g. Cochran (1937), Graybill &
Deal (1959), Fairweather (1972), Paule & Mandel (1982), Jordan & Krish-
namoorthy (1996), Yu, Sun & Sinha (1999), Hartung & Makambi (2000),
and Witkovský (2001).

For latest developments, in model (1), see Rukhin & Vangel (1998),
Rukhin, Biggerstaff & Vangel (2000), Wimmer & Witkovský (2003b),
Iyer, Wang & Matthew (2002), and Hartung, Böckenhoff & Knapp
(2003).

In this paper, in Section 2, we consider and compare interval estimates
for the common mean µ in model (1) based on four methods proposed in
recent statistical literature. In particular we will consider interval estimates
proposed by Rukhin & Vangel (1998), Hartung, Böckenhoff & Knapp (2003),
Iyer, Wang & Matthew (2002), and by Kenward & Roger (1997).

For construction of the interval estimates for the between variance com-
ponent we propose interval estimator based on the generalized p-values, a
method suggested by Tsui & Weerahandi (1989) and Weerahandi (1995).
For more details see Wimmer & Witkovský (2003a).

2. Interval estimate of the common mean µ in the model with

general between-group variance σ2
B

If the between laboratory variance σ2
B can not be neglected we will consider

model (1).

2.1. Rukhin-Vangel method for interval estimation of the common

mean µ

Rukhin & Vangel (1998) showed that the computationally simple Mandel-
Paule method for estimation of the between-group variance σ2

B , see Paule &
Mandel (1982), can be interpreted as simplified version of the maximum like-
lihood (ML) method. Further, Rukhin, Biggerstaff & Vangel (2000) showed
that the Mandel-Paule estimator of σ2

B is usually close to the restricted
maximum likelihood (REML) estimator.

The Mandel-Paule estimator of the common mean µ (MP estimator)
has the form
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ˆ̂µ
(MP )

=

∑k
i=1 ŵ

(MP )
i Ȳi

∑k
i=1 ŵ

(MP )
i

,(8)

where ŵ
(MP )
i = 1/(σ̂

2(MP )
B + S2

i /ni) are the MP estimators of the weights

wi. Here σ̂
2(MP )
B estimates the between group variance σ2

B and could be
derived iteratively from the equation

k∑

i=1

(
Ȳi − ˆ̂µ

(MP )
)2

σ̂
2(MP )
B + S2

i /ni

= k − 1.(9)

Notice that the left side of (9) is a monotonically decreasing convex function
(with probability one), for more details see Paule & Mandel (1982), Rukhin
& Vangel (1998) and Iyer, Wang & Mathew (2002).

Rukhin & Vangel (1998) derived consistent estimator of the asymptotic

variance of the consensus mean estimator ˆ̂µ
(MP )

(as k → ∞). So, the
approximate (1−α)×100% confidence interval proposed by Rukhin & Vangel
is given by

ˆ̂µ ± z(1 − α/2)

√√√√
k∑

i=1

(Ȳi − ˆ̂µ)2

(σ̂2
B + S2

i /ni)2

/(
k∑

i=1

1

σ̂2
B + S2

i /ni

)
.(10)

Here σ̂2
B is the MP estimator or the modified MP estimator (with k instead

of k−1 in (9)) of σ2
B and ˆ̂µ is the MP estimator or the modified MP estimator

of µ, for more details see Rukhin & Vangel (1998).

In Figure 2 the empirical coverage probabilities of the nominal 95%
interval estimator (10) are presented for different situations. As expected,
for large number of laboratories k the coverage probabilities are satisfactory
and close to the nominal 95% level. However, for medium and small k the
actual coverage probabilities are bellow the nominal level. So, we conclude
that the Rukhin-Vangel confidence interval (10) for the common mean µ is
useful in situations with more than k = 20 laboratories.
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Figure 2. The empirical coverage probabilities of the 95% Rukhin-Vangel

confidence intervals (10) calculated with the Mandel-Paule esti-

mates of variance components, based on 10,000 Monte Carlo runs

for each specific design as specified in the Appendix A. Here we use

the symbol 5 for designs with σ2

k
= 1, 2 for designs with σ2

k
= 2,

3 for designs with σ2

k
= 3, and © for designs with σ2

k
= 4. The

solid line shows the nominal 95% level.

2.2. Hartung-Böckenhoff-Knapp method for interval estimation of

the common mean µ

Hartung, Böckenhoff & Knapp (2003) proposed another, computationally
simple, approximate (1 − α) × 100% confidence interval for the common
mean µ based on the following considerations.

Let ci = wi/wΣ, i = 1, . . . , k, where wi = 1/(σ2
B + σ2

i /ni) and wΣ =∑k
i=1 wi. Note that µ̂(GLS) =

∑k
i=1 ciȲi. Further, let
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U2
i = ci

(
Ȳi −

k∑

i=1

ciȲi

)2

and S2(HBK) =
1

k − 1

k∑

i=1

U2
i .(11)

Hartung, Böckenhoff & Knapp (2003) proved that

wΣ

1 − wi/wΣ
U2

i ∼ χ2
1, i = 1, . . . , k,(12)

wΣ

k∑

i=1

U2
i ∼ χ2

k−1,(13)

µ̂(GLS) is independent of U 2
i , i = 1, . . . , k,(14)

µ̂(GLS) − µ√
S2(HBK)

∼ tk−1.(15)

Further, they suggested to use estimated weights ĉi = ŵi/ŵΣ in (11), where
ŵi = 1/(σ̂2

B + σ̂2
i /ni), and σ̂2

B and σ̂2
i are MINQUEs or other quadratic

estimators, and showed that

ˆ̂µ − µ√
Ŝ2(HBK)

appr.∼ tk−1,(16)

for more details see Theorem 2.3 and Theorem 4.2 in Hartung, Böckenhoff
& Knapp (2003).

So, the approximate (1 − α) × 100% confidence interval, proposed by
Hartung, Böckenhoff & Knapp is given by

ˆ̂µ ± tk−1(1 − α/2)

√
Ŝ2(HBK),(17)

where tk−1(1−α/2) is the (1−α/2)-quantile of the Student’s t distribution
with k − 1 degrees of freedom.

In Figure 3 the empirical coverage probabilities of the nominal 95%
Hartung-Böckenhoff-Knapp interval estimator (17), calculated with the
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Mandel-Paule estimates of variance components, are presented for different
situations. The actual coverage probabilities are quite satisfactory for almost
all situations where the true between-group variance σ2

B is non-negligible. If
the true variance σ2

B is small, the actual coverage probabilities tends to be
bellow the nominal level. In the most extreme situation, considered in our
simulations, if k = 2 and the number of observations in each laboratory is
very small, the actual coverage probabilities are not acceptable and are well
bellow the nominal level.
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Figure 3. The empirical coverage probabilities of the 95% Hartung-

Böckenhoff-Knapp confidence intervals (17) calculated with the

Mandel-Paule estimates of variance components, based on 10,000

Monte Carlo runs for each specific design as specified in the Ap-

pendix A. Here we use the symbol 5 for designs with σ2

k
= 1, 2

for designs with σ2

k
= 2, 3 for designs with σ2

k
= 3, and © for

designs with σ2

k
= 4. The solid line shows the nominal 95% level.
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2.3. Iyer-Wang-Mathew method for interval estimation of the

common mean µ

Iyer, Wang & Mathew (2002) proposed a confidence interval procedure for
the common mean µ using the method of generalized p-values (also known as
generalized confidence intervals — GCI), see Tsui and Weerahandi (1989),
Weerahandi (1993) and Weerahandi (1995), see also Khuri, Mathew & Sinha
(1998).

As the authors showed by large simulation study (the design was similar
to that used in this paper), the procedure performs adequately for all sample
sizes and the coverage probabilities are very satisfactory. For situations with
small between-group variance σ2

B the actual coverage probabilities tend to
be larger than the nominal 95% level. If the number of laboratories is k = 2,
the conservativism of the GCI estimator is even more apparent. For more
details see Figure 1 in Iyer, Wang & Mathew (2002).

However, the GCI estimate has no explicit expression. To get the limits
of the interval estimate of the common mean µ, say µLow ≤ µ ≤ µUpp, one
should generate a large number, say K (e.g. K = 10000), of independent
realizations of the proposed generalized pivotal quantity, say R. For more
details on the construction of the pivotal quantity R see equation (11) in
Iyer, Wang & Mathew (2002).

The pivot R depends functionally on the realized sufficient statistics
ȳ1, . . . , ȳk and s2

1, . . . , s
2
k, and on independent random variables Z ∼ N(0, 1),

Q ∼ χ2
k−1, and Qi ∼ χ2

ni−1, i = 1, . . . , k. Its distribution depends only on
the parameter of interest, i.e. the common mean µ, and does not depend on
the unknown nuisance parameters σ2

B , and σ2
i , i = 1, . . . , k. The limits µLow

and µUpp of the (1 − α) × 100% GCI estimate are defined by the following
equations:

Pr(R ≤ µLow) = α/2 and Pr(R ≤ µUpp) = 1 − α/2.(18)

By generating K independent realizations of R we can estimate the required
percentiles of the distribution of R, and hence we can estimate the limits
µLow and µUpp by the empirical percentiles R[Kα/2] and R[K(1−α/2)].

The computation of the proposed GCI is rather intensive as in each
step (i.e. for each realization of R) one should calculate the Mandel-Paule
solution for the between-group variance.
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2.4. Kenward-Roger method for interval estimation of the com-

mon mean µ

Based on the results of Harville and his co-workers, see e.g. Kackar & Harville
(1984), and Harville & Jeske (1992), Kenward & Roger (1997), suggested
a general approach to making small sample inference for fixed effects in
general linear mixed effects models by using restricted maximum likelihood
(REML) estimates of the unknown variance components.

Savin, Wimmer & Witkovský (2003) proposed to calculate interval es-
timates for the common mean µ in model (1) by Kenward-Roger method,
and as they showed by simulations, the proposed interval estimator has
satisfactory coverage probabilities. Moreover, the method is directly
available to the researchers by commercial statistical packages, like
e.g. SAS.

Here we propose simplified version of the interval estimator based on
the Kenward-Roger method. Considering the result of Rukhin, Biggerstaff
& Vangel (2000) we suggest to replace the REML estimates of variance
components by the Mandel-Paule estimates, otherwise using the explicit
formulae for the interval estimator based on the Kenward-Roger
method.

In order to derive the explicit formulae we consider now the model (1)
in matrix notation:

Y = µ1N + Z0b +
k∑

i=1

Ziεi,(19)

where Y = (Y11, . . . , Yknk
)′, b = (b1, . . . , bk)

′, εi = (εi1, . . . , εini
)′, for i =

1, . . . , k, and 1N = (1′n1
, . . . , 1′nk

)′, Z0 = Diag{1ni
}, where 1ni

= (1, . . . , 1)′

is ni-dimensional vector of ones. Z ′

i = [0, . . . , Ini
, . . . , 0] with Ini

the (ni×ni)-
dimensional identity matrix, i = 1, . . . , k.

Notice that b ∼ N(0, σ2
BIk) and εi ∼ N(0, σ2

i Ini
) are mutually indepen-

dent. Under given assumptions

Var(Y ) = Σ = Diag
{
σ2

BJni
+ σ2

i Ini

}
,(20)

where Jni
denotes the (ni × ni)-dimensional matrix of ones.

If the variance components ϑ = (σ2
B , σ2

1 , . . . , σ
2
k)

′ are known, the GLS
estimator of the common mean is given by



On small sample inference for common mean .... 135

µ̂(GLS) =
(
1′NΣ−11N

)
−1

1′NΣ−1Y = Φ
k∑

i=1

niȲi

σ2
i + niσ

2
B

,(21)

with Φ being its variance

Φ = Var
(
µ̂(GLS)

)
=
(
1′NΣ−11N

)
−1

.(22)

If the variance components ϑ are estimated by REML ϑ̂, the plug-in esti-

mator ˆ̂µ
(REML)

of the common mean µ is given by

ˆ̂µ
(REML)

= Φ̂
k∑

i=1

niȲi

σ̂2
i + niσ̂2

B

,(23)

where Φ̂ = Φ(ϑ̂).

According to the results of Kenward & Roger (1997) the adjusted esti-

mator of the small sample variance of ˆ̂µ
(REML)

is given by

V̂ar

(
ˆ̂µ

(REML)
)

= Φ̂A = Φ̂ + 2Λ̂,(24)

where

Λ̂ = Λ
(
ϑ̂
)

= Φ̂2
k∑

i=0

k∑

i=0

Ŵij

(
Q̂ij − P̂iΦ̂P̂j

)
,(25)

where Ŵij, Q̂ij, and P̂i, are estimated versions of Wij , Qij, and Pi defined
by

Pi = 1′N
∂Σ−1

∂σ2

i

1N

and

Qij = 1′N
∂Σ−1

∂σ2
i

Σ
∂Σ−1

∂σ2
j

1N , i, j = 0, 1, . . . , k,

(26)

here we use σ2
0 = σ2

B, and W is the asymptotic covariance matrix of ϑ̂,
i.e. the inverse of the Fisher information matrix. The explicit formulae are
given in the Appendix B.
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Here we suggest to use ˆ̂µ
(MP )

instead of ˆ̂µ
(REML)

, and MP estimates of
variance components instead of the REML ϑ̂. Hence, the approximate
(1 −α)× 100% Kenward-Roger confidence interval for the common mean µ
is then given by

ˆ̂µ ±
√

Φ̂A tm̂(1 − α/2),(27)

where by tm̂(1 − α/2) we denote the (1 − α/2)-quantile of the Student’s
t-distribution with m̂ degrees of freedom, where m̂ is the approximation of
the Satterthwaite’s degrees of freedom estimator

m̂ =
2Φ̂2

V̂ar(Φ̂)
,(28)

where

Var(Φ̂) =

(
∂Φ

∂ϑ

)
′

W

(
∂Φ

∂ϑ

)
.(29)

From that we have

m̂ =
2

Φ̂2(P̂ ′Ŵ P̂ )
,(30)

where P̂ = (P̂0, P̂1, . . . , P̂k)′.

In Figure 4 we present the empirical coverage probabilities of the 95%
confidence intervals (27), calculated with the Mandel-Paule estimates of the
variance components, based on 10,000 Monte Carlo runs for each specific
design. The presented simulation study was performed by using our own
MATLAB algorithms developed for computing the Kenward-Roger confi-
dence intervals for the common mean. In our calculations, we have used the
inverse of the Fisher information matrix as an estimate of the covariance
matrix of the variance components estimators, as suggested by Kenward
and Roger (1997).

The actual coverage probabilities of the Kenward-Roger confidence in-
terval estimator are very satisfactory for almost all considered situations.
If the between-group variance σ2

B is small the actual coverage probabilities
are slightly above the nominal 95% level (similar pattern observed for the
GCI estimator). However, if the number of laboratories is k = 2 the actual
coverage probabilities are not satisfactory. If the number of observations per
laboratory is large, the actual coverage probabilities tends to be well bellow
the nominal level.
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Figure 4. The empirical coverage probabilities of the 95% Kenward-Roger

confidence intervals (27) calculated with the Mandel-Paule esti-

mates of variance components, based on 10,000 Monte Carlo runs

for each specific design as specified in the Appendix A. Here we use

the symbol 5 for designs with σ2

k
= 1, 2 for designs with σ2

k
= 2,

3 for designs with σ2

k
= 3, and © for designs with σ2

k
= 4. The

solid line shows the nominal 95% level.

3. Examples

In Table 3 we present the approximate 95% interval estimates for the com-
mon mean µ of the Selenium in Non-fat Milk Powder Data, see Table 1,
and for the common mean µ of the Arsenic in Oyster Tissue Data, see
Table 2, calculated by the four methods e mentioned above. In particular,
by the Rukhin-Vangel method with Mandel-Paule estimates
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of variance components (RV-MP), by the Hartung-Böckenhoff-Knapp method
with Mandel-Paule estimates of variance components (HBK-MP), by the
GCI based on the Iyer-Wang-Mathew method (IWM-GCI) with K = 10000
independent realizations of the generalized pivotal quantity, and by the
Kenward-Roger method with Mandel-Paule estimates of variance compo-
nents (KR-MP).

Table 3. 95% Interval estimates for common mean calculated by differ-

ent methods. The variance components were estimated by the

Mandel-Paule method.

Data Method Equation ˆ̂µ Lower Upper

Selenium RV-MP (10) 109.8214 108.0596 111.5832

Selenium HBK-MP (17) 109.8214 105.6741 113.9687

Selenium IWM-GCI (18) 109.6798 104.4344 114.6919

Selenium KR-MP (27) 109.8214 104.0357 115.6071

Arsenic RV-MP (10) 13.2252 12.7095 13.7408

Arsenic HBK-MP (17) 13.2252 12.6770 13.7733

Arsenic IWM-GCI (18) 13.2265 12.6736 13.7769

Arsenic KR-MP (27) 13.2252 12.6749 13.7754

The Selenium data have small number of groups (methods), k = 4, they
are unbalanced, with medium number of observations per one laboratory.
The data show clear heterogeneity of variances. The Mandel-Paule estimate

of the between-group variance is σ̂
2(MP )
B = 4.1340, however, the REML

estimate is almost zero. According to our simulations we would expect that
the correct 95% interval estimate should be a compromise between the HBK-
MP (with Ŝ2(HBK) = 1.6983) and KR-MP method (with Φ̂A = 2.1525 and
m̂ = 2.2), and it is consonant with IWR-GCI method.

The Arsenic data have large number of laboratories, k = 28, they are
almost balanced, with small number observations per one laboratory. The
data show clear heterogeneity of variances. The Mandel-Paule estimate of

the between-group variance is σ̂
2(MP )
B = 1.9055, and REML estimate is

σ
2(REML)
B = 1.9142. According to our simulations we would expect similar

result by all the methods. Here we have Ŝ2(HBK) = 0.0714 for the HBK-MP
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method and Φ̂A = 0.0719 and m̂ = 26.8 for the KR-MP method. Iyer, Wang
& Mathew (2002) reported the 95% generalized confidence interval estimate
for Arsenic data as (12.683, 13.772).

4. Conclusions

In this paper we have considered and compared several interval estimators
for the common mean µ in general unbalanced heteroscedastic one-way ran-
dom effects model (1).

We have proposed to use computationally simplified version of the
Kenward-Roger confidence interval by using the Mandel-Paule estimators
of the variance components. Because of the computational simplicity and
based on our simulations we suggest to use this estimator for computing
interval estimates of the common mean µ.

As shown by the simulation study, three of the considered interval esti-
mators have satisfactory empirical coverage probabilities in most of the con-
sidered situations, namely the Hartung-Böckenhoff-Knapp estimator (HBK-
MP), Iyer-Wang-Mathew estimator (IWM-GCI), and the Kenward-Roger
estimator (KR-MP).

If the true between-group variance σ2
B is small, the actual coverage

probabilities of the HBK-MP estimator tend to be bellow the nominal level
and those of the IWM-GCI estimator and the KR-MP estimator tend to be
above the nominal level.

If the number of laboratories is k = 2, the behavior of the estimators
is critical. The IWM-GCI estimator tends to be too conservative, i.e. the
actual coverage probabilities are above the nominal level, especially if σ2

B is
small.

The KR-MP estimator has satisfactory coverage probabilities only if the
number of observations per laboratory is very small, ni = 2, otherwise the
actual coverage probabilities can be well bellow the nominal level.

On the other hand, for k = 2, the HBK-MP estimator has satisfactory
coverage probabilities for medium and large number of observations per lab-
oratory, but for small number of observations the actual coverage probability
can be well bellow the nominal level.

Acknowledgement

The research was supported by the grant from Scientific Grant Agency of
the Slovak Republic VEGA 1/0264/03.
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Appendix A

The design of the simulation study is similar to that presented in Iyer, Wang
& Mathew (2002).

Assuming that model (1) is true, we have used the following values of
the unknown parameters in the simulation study: µ = 0, k ∈ {21, 11, 5, 2}.
Given k, four patterns of ni were used: ni = {2, 10, 2, 10, . . .}, i = 1, . . . , k,
further ni = 2 for all i = 1, . . . , k, ni = 10 for all i and ni = 30 for all i.
The within laboratory variances were equally spaced values of {σ2

1 , . . . , σ
2
k},

where σ2
1 = 1 and σ2

k ∈ {1, 2, 3, 4}. The values for σ2
B were taken to be

{0, 1/4, 1/2, 1, (1 + σ2
k)/2, σ

2
k, 2σ2

k, 4σ2
k}.

For each combination of parameters, 10,000 independent realizations of
ȳ1, . . . , ȳk and s2

1, . . . , s
2
k were generated and the 95% confidence interval for

µ was calculated.

The relative frequency of cases such that the interval estimate contained
the true value µ = 0 was recorded and plotted in the figures.

Appendix B

Notice that

Σ−1 = Diag

{
1

σ2
i

(
Ini

− σ2
B

σ2
i + niσ

2
B

Jni

)}
,(31)

det(Σ) =
k∏

i=1

σ2(ni−1)(σ2
i + niσ

2
B),(32)

and the restricted log-likelihood function for variance components
ϑ = (σ2

B , σ2
1 , . . . , σ

2
k) equals to

loglik(ϑ) = −1

2
(N − 1) log(2π) − 1

2
log(det(Σ)) − 1

2
log(det(1′NΣ−11N ))

−1

2
y′
(
Σ−1 − Σ−11N (1′NΣ−11N )−11′NΣ−1

)
y

(33) = −1

2
(N − 1) log(2π) − 1

2

k∑

i=1

(
(ni − 1) log(σ2

i ) + log(σ2
i + niσ

2
B)
)
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−1

2
log

(
k∑

i=1

ni

σ2
i

(1 − γi)

)
− 1

2

k∑

i=1

ni

σ2
i

(
(ni − 1)

s2
i

ni
+ (1 − γi)ȳ

2
i

)

+
1

2

(
k∑

i=1

ni

σ2
i

(1 − γi)ȳi

)2/(
k∑

i=1

ni

σ2
i

(1 − γi)

)
,

where γi = σ2
B/(σ2

B + σ2
i /ni).

The REML estimator of ϑ is defined as

ϑ̂ = argmaxϑ∈Θloglik(ϑ),(34)

where Θ is the natural parameter space of ϑ.

Lemma 1 . Consider model (1) in its matrix form (19). Then the following

holds true:

Φ = (1′NΣ−11N )−1 =

(
k∑

i=1

ni

σ2
i + niσ2

B

)−1

,(35)

P0 = 1′N
∂Σ−1

∂σ2
B

1N = −
k∑

i=1

(
ni

σ2
i + niσ

2
B

)2

,(36)

Pi = 1′N
∂Σ−1

∂σ2
i

1N = − ni

(σ2
i + niσ2

B)2
, i = 1, . . . , k,(37)

Q0,0 = 1′N
∂Σ−1

∂σ2
B

Σ
∂Σ−1

∂σ2
B

1N =
k∑

i=1

(
ni

σ2
i + niσ

2
B

)3

,(38)

Q0,i = 1′N
∂Σ−1

∂σ2
B

Σ
∂Σ−1

∂σ2
i

1N = Qi,0 =
n2

i

(σ2
i + niσ2

B)3
, i = 1, . . . , k,(39)
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Qij = 1′N
∂Σ−1

∂σ2
i

Σ
∂Σ−1

∂σ2
j

1N

=





0, i 6= j,

ni

(σ2
i + niσ2

B)3
, i = j,

, i = 1, . . . , k.

(40)

The Fisher information matrix for the REML of variance components is

defined by its elements as

{IF }i,j =
1

2

[
tr

(
∂Σ−1

∂σ2
i

Σ
∂Σ−1

∂σ2
j

Σ

)
− tr (2ΦQij − ΦPiΦPj)

]

=
1

2
[{S}ij − {R}ij ] , i, j = 0, 1, . . . , k,(41)

here we use σ2
0 = σ2

B and the elements of matrix R are given by

{R}ij = Φ(2Qij − PiΦPj), i, j = 0, 1, . . . , k.(42)

The elements of matrix S are given by

{S}0,0 = −P0 =
k∑

i=1

(
ni

σ2
i + niσ2

B

)2

,(43)

{S}0,i = {S}i,0 = −Pi =
ni

(σ2
i + niσ2

B)2
, i = 1, . . . , k,(44)

(45) {S}ij =





0, i 6= j,

1

σ4
i

(
ni−

2σ2
Bni

σ2
i + niσ

2
B

+
niσ

4
B

(σ2
i + niσ

2
B)2

)
, i = j,

, i = 1, . . . , k.
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Proof. The proof is based on the fact that

∂Σ−1

∂σ2
i

= −Σ−1 ∂Σ

∂σ2
i

Σ−1,(46)

and on using (31).

Then the asymptotic covariance matrix of ϑ̂, say W , is the inverse of the
Fisher information matrix IF (ϑ), for more details see Searle, Casella &
McCulloch (1992), i.e.

W = W (ϑ) = I−1
F (ϑ).(47)
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