ArticleOriginal scientific text

Title

Band copulas as spectral measures for two-dimensional stable random vectors

Authors 1, 1

Affiliations

  1. Institute of Mathematics, University of Zielona Góra, Podgórna 50, 65-246 Zielona Góra, Poland

Abstract

In this paper, we study basic properties of symmetric stable random vectors for which the spectral measure is a copula, i.e., a distribution having uniformly distributed marginals.

Keywords

Symmetric stable random vector, spectral measure, canonical spectral measure, copula, James corelation for random variables

Bibliography

  1. J. Bojarski, A new class of band copulaes - distributions with uniform marginals, preprint (2001).
  2. T.S. Ferguson, A class of symmetric bivariate uniform distributions, Statist. Papers 36, (1995).
  3. E. Feldheim, Etude de la stabilité de lois de probabilité, Ph. Thesis, Thése de la Faculté des sciences de Paris 1937.
  4. M. Ledoux and M. Talagrand, Probability in Banach spaces, Isoperymetry and Processes, A series of Modern Surveys in Mathematics, Springer Verlag, band 23 (1991).
  5. P. Lévy, Théorie de l'addition des variables aléatoires, 2nd edn, Gauthier-Villars, Paris 1954.
  6. Nelsen R. B, An Introduction to Copulas, John Wiley & Sons, New York 1999.
  7. D. Kurowicka and R. Cooke, Conditional and partial correlation for graphical uncertainty model, Proceedings of the 2nd International Conference on Mathematical Methods in Reliability, Recent Advences in Reliability Theory, Birkhäuser 2000, 259-276.
  8. G. Samorodnitsky and M. Taqqu, Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance, Chapman & Hall, London 1993.
Pages:
69-75
Main language of publication
English
Received
2003-03-10
Published
2003
Exact and natural sciences