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Abstract

It is shown that a method of robust estimation in a two way crossed
classification mixed model, recently proposed by Bednarski and Zontek
(1996), can be extended to a more general case of variance components
model with commutative a covariance matrices.
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1. Introduction and notation

In the paper, we assume that a distribution function of a sample we observed
is modeled by the following family of normal distributions on Rn

{
N

(
Xβ,

k∑

i=1

σ2
i Vi

)
: β ∈ Rp, σ1 ≥ 0, . . . , σk−1 ≥ 0, σk > 0

}
,

where X is a known matrix, while V1, . . . , Vk are known nonnegative definite
matrices. There is ample literature concerning a situation when the true
distribution of the sample satisfies the model assumptions. There were pro-
posed best unbiased estimators, admissible estimators, maximum likelihood
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estimators and so on. However, when the actual distribution is even very
closed to the model distribution (in the sense of the supremum norm of the
cumulative distribution function) a “classical” estimate can be arbitrary far
from any model parameter.

There are different approaches to robust analysis in mixed models. One
of them relies on the robust estimation of the random effects and naturally
leads to high dimensional nonlinear quations. This concept was introduced
to the interlaboratory model by Rocke (1991) (see also Iglewicz, 1993). An-
other approach based on the modified loglikelihood function. Here we can
mention papers by Huggins (1993), Bednarski and Zontek (1996), Bednarski
and Clarke (1993). The modification is so chosen that the corresponding sta-
tistical functional is Fisher consistent and Fréchet differentiable. This im-
plies important robustness properties (see Bednarski, Clarke and KoÃlkiewicz,
1991, and Bednarski, 1994).

In the paper, we adopt the approach of Bednarski and Zontek (1996) to
the following model

N

(
Xβ,

k∑

i=1

σ2
i Vi

)
,(1)

where X is a known n × p matrix of rank p, V1, . . . , Vk are linearly in-
dependent known n × n nonnegative definite matrices, while β ∈ Rp and
σ1 ≥ 0, . . . , σk−1 ≥ 0, σk > 0 are unknown parameters. In addition, we
assume that Vk = In and that V1, . . . , Vk commute.

In Section 2, a statistical functional defining an estimator of the vector
of fixed effects and scale components is presented. Under the assumptions
appearing in Bednarski and Zontek (1996) it is shown that the functional is
Fisher consistent and Fréchet differentiable for the supremum norm. This
in turn implies that the corresponding estimators are robust and asymp-
totically normal. Finally, the explicite form of the asymptotic covariance
matrix is given.

Let Mn,r denote the space of n× r real matrices and S≥n the subspace
of Mn,n of all symmetric nonnegative definite matrices. The symbol A⊗B
means the Kronecker product of matrices A and B. Throughout the paper
diag(w) stands for a diagonal matrix with the i-th diagonal element equal
to the i-th component of a vector w. The range and the transpose of any
matrix W is written as R(W ) and W T , respectively.
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2. The variance components model

Let Y1, . . . , YN be a sample from the model (1). Then the vector (Y T
1 , . . . , Y T

N )T

has the following distribution

N

(
(1N ⊗X)β, IN ⊗

k∑

i=1

σ2
i Vi

)
.(2)

The distribution function corresponding to (2) will be denoted by F (·|θ),
where θ = (βT , σT )T , while σ = (σ1, . . . , σk)T .

Under the assumption that V1, . . . , Vk commute there exist nonzero
matrices Q1, . . . , Qq in S≥n such that

span{Q1, . . . , Qq} = qspan{V1, . . . , Vk}
and that

QiQj = δijQi, i, j = 1, . . . , q

(see Seely, 1971, for construction see also Zmyślony and Drygas, 1992), where
δij is the Kronecker’s delta. So each matrix Vi, i = 1, . . . , k, can be presented
as

Vi =
q∑

j=1

hijQj .

Since Q1, . . . , Qq are idempotent and symmetric matrices, they can be ex-
pressed as Qi = P iP

T
i , where P i ∈ Mn×ni and P T

i P i = P T
i QiP i = Ini

(this also means that rank(Qi) = ni). Then one can easily find that

P T

(
k∑

i=1

σiVi

)
P =

q∑

j=1

(
k∑

i=1

σ2
i hij

)
P T QjP ,

where P = (P 1, . . . ,P q), is a diagonal matrix with diagonal elements given
by

δ2
r =

k∑

i=1

σ2
i hij , r = Nj−1, . . . , Nj , j = 1, . . . , q,(3)

where No = 0, Nj =
∑j

i=1 ni, j = 1, . . . , q.



64 R. Zmyślony and S. Zontek

3. Robust M-functional

Under the assumptions imposed on the model (1) the loglikelihood function
can be written as

l(y|θ) = ln
(
|Vσ|1/2

)
+ 0.5 (y −Xβ)T V −1

σ (y −Xβ)

=
n∑

r=1

[
ln(δr) + 0.5

(
P

T

r (y −Xβ)/(cδr)
)2

]
.

A statistical functional will be defined via an objective function, which is a
modification of the loglikelihood function. This function can be written in
the following form

Φ(y|θ) =
n∑

r=1

[
ln(δr) + φ

(
P

T

r (y −Xβ)/(cδr)
)]

,(4)

where a function φ : Rn → R is properly chosen, while Pi is the i-th column
of the matrix P . The function Φ becomes the loglikelihood function when
φ(x) = x2/2 and c = 1. For a given φ we can frequently choose c to make
the functional Fisher consistent.

Definition 1 (the functional). Define the functional T for a given distri-
bution function G on Rn to be the parameter θ for which

∫
Φ(y|θ)dG(y)(5)

attains the minimum value.

For a given statistical functional T let us define an estimator θ̂N of θ by
θ̂N = T (F̂N ), where F̂N is the empirical distribution function based on
Y1, . . . , YN .

Similarly as in Bednarski and Zontek (1996), we state the assumptions
concerning φ which imply the Fisher consistency (A1, A2) and Fréchet
differentiability (A3, A4) of T .

A1 The function φ is symmetric about 0, and it has a positive derivative.

A2 The function xφ′(x) has a nonnegative derivative for x ≥ 0 and there
exists xo > 0 such that xoφ

′(xo) > 1.
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A3 The functions φ′ and φ′′ are bounded.

A4 The functions xφ′(x) and x2φ′′(x) are bounded.

Remark. For the robust estimation of scale Huber (1981) proposed the
function φ given by

φ(x) =





x2/2, |x| ≤ t,

t2(ln(|x|)− ln(t2) + 0.5), |x| > t.

This function after smooth modification in a neibourhood of points −t and
t (for details see Bednarski and Zontek, 1996) satisfies the assumptions
A1–A4.

The assumption A2 implies that there is a unique c > 0 satisfying

E[(W/c)φ′(W/c)− 1] = 0,(6)

where W is the standard normal random variable (see Bednarski and Zontek,
1996).

Theorem 1 (Fisher consistency). Let θo = ((βo)T , (σo)T )T be a given pa-
rameter and let c in (4) be defined by (6). If φ satisfies A1 and A2, then

∫
Φ(y|θ)dF (y|θ0)(7)

attains the global minimum if and only if θ = θ0.

Proof. As in Bednarski and Zontek (1996), we can reduce the minimization
problem to the one dimensional shift and scale case. Really, (7) attains the
global minimum when for each r = 1, . . . , n

∫ [
ln(δr) + φ

(
P

T

r (y −Xβ)/(cδr)
)]

dF (y|θ)

attains the global minimum. So for j = 1, . . . , q
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P T
j Xβ = P T

j Xβo and
k∑

i=1

σ2
i hij =

k∑

i=1

(σo
i )

2hij .

This means that β = βo and σ = σo.

Below we give a technical lemma which implies a simple form of the asymp-
totic covariance matrix of the estimator θ̂N .

Define for σ = (σ1, . . . , σk)T the following matrices

U (1)(σ) = XT V −1
σ X

and

U (2)(σ) = 2
q∑

j=1

nj(∑k
i=1 σ2

i hij

)2 diag(σ)HjH
T
j diag(σ),

where Vσ =
∑k

i=1 σ2
i Vi, while Hj = (h1j , . . . , hkj)T .

Let Ψ(1)(·|θ) and Ψ(2)(·|θ) be a partition of the vector function Ψ(·|θ) =
∂
∂θΦ(·|θ) with respect to fixed effects and scale components, respectively.
Moreover, let

∆(·|θ) =




∆11(·|θ) ∆12(·|θ)

∆12(·|θ)T ∆22(·|θ)




be the corresponding partition of the matrix ∂
∂θΨ(·|θ).

Lemma 1. Let the constant c be defined by (6) and let W be a standard
normal random variable. If A1, A2 are satisfied, then we have

(i)
∫

Ψ(1)(y|θ)
[
Ψ(1)(y|θ)

]T
dF (y|θ) = c−2E

[
φ′(W/c)2

]
U (1)(σ),

∫
∆11(y|θ)dF (y|θ) = c−2E

[
φ′′(W/c)

]
U (1)(σ),
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(ii)
∫

Ψ(2)(y|θ)
[
Ψ(2)(y|θ)

]T
dF (y|θ)=0.5E

{[
(W/c)φ′(W/c)−1

]2}
U (2)(σ),

∫
∆22(y|θ)dF (y|θ)=0.5E

[
(W/c)2φ′′(W/c) + 1

]
U (2)(σ),

(iii)
∫

Ψ(1)(y|θ)
[
Ψ(2)(y|θ)

]T
dF (y|θ) =

∫
∆12(y|θ)dF (y|θ) = 0.

Proof. Let θ = (βT , σT )T be an arbitrary parameter. Define a random
vector

Z = (Z1, . . . , Zn)T = diag(δ1, . . . , δn)−1P T (Y −Xβ),

where the distribution function of a random vector Y is F (·|θ). Then com-
ponents of Z are independent standard normal variables.

Part (i). It is easy to see that the random vector Ψ(1)(Y |θ) can be
represented as

Ψ(1)(Y |θ) = −
n∑

r=1

φ′(Zr/c)
cδr

XT Pr.

Since

E[φ′(Zi/c)φ′(Zj/c)] =





E[φ′(W/c)2], i = j

0, i 6= j
,

we have

E
{
Ψ(1)(Y |θ)[Ψ(1)(Y |θ)]T

}
=

E[φ′(W/c)2]
c2

XT

(
n∑

r=1

1
δ2
r

PrP
T
r

)
X

=
E[φ′(W/c)2]

c2
XT V −1

σ X.



68 R. Zmyślony and S. Zontek

The second equation in part (i) of the lemma can be shown to hold in a
similar way, by using the relation

∆11(Y |θ) =
n∑

r=1

φ′′(Zr/c)
c2δ2

r

XT PrP
T
r X.

Part (ii). The first and the second partial derivatives of Φ(Y |θ) with respect
to σ are given by

Ψ(2)(Y |θ) = −
n∑

r=1

[
φ′(Zr/c)Zr/c− 1

] 1
δr

(
∂

∂σ
δr

)
,

∆(22)(Y |θ) =
n∑

r=1

{[
φ′′(Zr/c)Z2

r /c2 + 1
] 1

δ2
r

(
∂

∂σ
δr

) (
∂

∂σ
δr

)T

+
[
φ′(Zr/c)Zr/c− 1

]
[

1
δr

(
∂2

∂2σ
δr

)
− 2

δ2
r

(
∂

∂σ
δr

) (
∂

∂σ
δr

)T
]}

.

Hence

∫
Ψ(2)(y|θ)[Ψ(2)(y|θ)]T dF (y|θ) = e

n∑

r=1

1
δ2
r

(
∂

∂σ
δr

)(
∂

∂σ
δr

)T

= e
q∑

j=1

nj

q̃j


 ∂

∂σ

√
k∑

i=1
σ2

i hij





∂

∂σ

√
k∑

i=1
σ2

i hij




T

= e
q∑

j=1

nj

q̃2
j

diag(σ)HjH
T
j diag(σ),

where e = E{[(W/c)φ′(W/c) − 1]2}, while q̃j =
∑k

i=1 σ2
i hij . Now making

use of equation (6) defining the constant c one can easily derive the second
formula of (ii).

Part (iii) follows similarly.
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If the function φ satisfies the assumptions A3 and A4, then the vector
function Ψ fulfills the condition A of Clarke (1983, see also 1996). Therefore
the resulting functional T is Fréchet differentiable for the supremum norm
(to be denoted by || · ||). We phrase it in the following theorem.

Theorem 2 (Fréchet differentiability). If the function φ associated with
the statistical functional T satisfies A3 and A4, then

T (G)− T (F (·|θ)) = M(θ)−1
∫

Ψ(y|θ)dG(y) + o(‖G− F (·|θ)‖),

where

M(θ) =
∫

∆(y|θ)dF (y|θ).

Theorems 1, 2 and Kiefer’s inequality (Kiefer, 1961) imply that if
√

N‖GN−
F (·|θ)‖ stays bounded, then

√
N(θ̂N − θ) =

1√
N

M(θ)−1
N∑

i=1

Ψ(Yi|θ) + oG⊗N
N

(1).

Since Ψ(Y1|θ), . . . , Ψ(YN |θ) are i.i.d. random vectors with a finite second
moment, the central limit theorem implies that

√
N(θ̂N−θ) is asymptotically

normal with zero mean (at the model) and with covariance matrix

V (θ) = M(θ)−1
{∫

Ψ(y|θ)[Ψ(y|θ)]T dF (y|θ)
}

M(θ)−1.(8)

Now from Lemma 1 it follows that the covariance matrix for the Fréchet
differentiable estimator generated by (5) is of the form

V (θ) =




w1[U (1)(σ)]−1 0

0 w2[U (2)(σ)]−1


 ,(9)

where the positive constants w1 and w2 are given by the formulas
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w1 =
c2E[φ′(W/c)2]
[Eφ′′(W/c)]2

,

w2 =
2E{[(W/c)φ′(W/c)− 1]2}
{E[(W/c)2φ′′(W/c) + 1]}2

,

while W is a standard normal random variable.
Note that (9) with w1 = w2 = 1 is the asymptotic covariance matrix

of the maximum likelihood estimator (only at the model). Thus coefficients
w1 and w2 (always w1, w2 ≥ 1) can be interpreted as asymptotic efficiency
coefficients.

Formula (8) gives a possibility of approximating the covariance matrix
of the estimator by the following matrix

NM̂(θ̂N )−1
{∫

Ψ(·|θ̂N )[Ψ(·|θ̂N )]T dF̂N

}
M̂(θ̂N )−1,(10)

where

M̂(θ̂N ) =
∫

∆(·|θ̂N )dF̂N .
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