ESTIMATES FOR THE DISTRIBUTION OF THE FIRST EXIT TIME OF α -STABLE PROCESSES

Wiesław Cupała

Institute of Mathematics University of Zielona Góra Podgórna, 50 65–246 Zielona Góra, Poland

e-mail: w.cupala@im.uz.zgora.pl

Abstract

The Varopoulos-Hardy-Littlewood theory and the spectral analysis are used to estimate the tail of the distribution of the first exit time of α -stable processes.

Keywords: first exit time, α -stable processes.

2000 Mathematics Subject Classification: 60G40, 60J25.

1. Preliminaries

Let $\xi(t)$ (t > 0) be an α -stable process on \mathbf{R}^d $(d \ge 3)$ i.e., it is a Markov process with the strong Markov property, the transition kernel of which is given by the convolution with a function $p_t(x)$ and the Fourier transform of $p_t(x)$ has a form

$$\hat{p}_t(y) = \exp(-t||y||^{\alpha}), \ (1 \le \alpha \le 2).$$

The uniformity in time of α -stable processes implies that the family of operators

$$T_t f(x) = E f(\xi_x(t)), \ (f \in L^p(\mathbf{R}^d))$$

forms a semigroup of contractions.

54 W. Cupała

Let $f \in L^p(\mathbf{R}^d)$ $(1 \le p \le \infty)$ and $\frac{1}{p} + \frac{1}{q} = 1$. The form of \hat{p}_t gives us the following estimation:

$$||T_t f||_{\infty} \le ||p_t||_q ||f||_p$$
.

Because

$$p_t(x) = \frac{1}{t^{d/\alpha}} p_1(\frac{x}{t^{1/\alpha}}),$$

we obtain that

$$||p_t||_q = t^{\frac{-dp}{\alpha}} ||p_1||_q,$$

for any $1 \le q \le +\infty$. This implies

(1)
$$||T_t f||_{\infty} \le C t^{\frac{-dp}{\alpha}} ||f||_p \ (p \ge 1),$$

where the constant C depends only on p.

Let U be a bounded domain in \mathbf{R}^d . Let ξ starts in $x \in U$ (let us denote this fact by $\xi_x(t)$). Trajectories of such processes are right-continuous and have left-hand side limits, so we can define the first exit time from U by

$$\tau_x = \inf\{t \mid \xi_x(t) \not\in U\}.$$

Lemma 1. Let U be a domain in \mathbf{R}^d and $\xi_x(t)$ be an α -stable process which starts in $x \in U$. Let us denote by

$$I_x(t) = \mathbf{1}_{\{t < \tau_x\}}$$

the indicator of the set of all trajectories for which $t < \tau_x$. Let $f \in L^p(U)$, $1 \le p \le \infty$. The family of operators defined by

$$(2) S_t f(x) = E f(\xi_x(t)) I_x(t)$$

forms a semigroup of contractions on $L^p(U)$.

Proof. By using of the strong Markov property of $\xi(t)$ we have

$$I_x(t)I_{\xi_x(t)}(s) = I_x(t+s).$$

Hence

$$S_t \circ S_s f(x) = E S_s f(\xi_x(t)) I_x(t) =$$

= $E(E f(\xi_{\xi_x(t)}(s)) I_{\xi_x(t)}(s)) I_x(t) =$
= $Ef(\xi_x(t)) I_x(t+s).$

So,
$$S_t \circ S_s = S_{t+s}$$
.

The estimation (1) implies

Lemma 2. Let $f \in L^p(U)$, $1 \le p \le \infty$. Then

(3)
$$||S_t f||_{\infty} \le C t^{\frac{-dp}{\alpha}} ||f||_p,$$

where constant C depends only on p, d, α .

Let D be the infinitesimal generator of S_t and let $N(\lambda)$ denote the dimension of its spectral projector $P(-\infty, \lambda)$.

Lemma 3. For any bounded domain U there exists a constant C such that for every $\lambda \geq 0$

$$N(\lambda) \le C\lambda^{\frac{d}{\alpha}}.$$

Proof. By (3) and the Varopoulos theory ([2], Theorem 1) we have

$$||f||_{2d/(d-\alpha)} \le C||D^{\frac{1}{2}}f||_2, \ f \in \text{Dom}\left(D^{\frac{1}{2}}\right).$$

So, by the Levin–Solomyak generalization of the CLR inequality (see [1]),

56 W. Cupała

for any $V \geq 0$, $V \in L^{\frac{d}{\alpha}}(U)$ the number of the negative eigenvalues of the operator D-V has an upper bound equals to

$$C_1 \int_U V^{\frac{d}{\alpha}} dx,$$

with some constant C_1 which depends only on α and U. Hence, for any $\lambda > 0$, the operator $D - \lambda Id$ has a finite number of the negative eigenvalues and, because this number is equal to $N(\lambda)$, we have

$$N(\lambda) \leq C_1 \mid U \mid \lambda^{\frac{d}{\alpha}}$$
.

Let (X, μ) be a σ -finite measure space and let Q_t (t > 0) be a sub-markovian (strongly continuous) symmetric semigroup, i.e., for all t > 0, $Q_t : L^2(X) \longrightarrow L^2(X)$ is a symmetric operator, and for all $f \in L^2$ with $0 \le f \le 1$ we have $0 \le Q_t f \le 1$ (we note that S_t is such a semigroup).

Definition 1. Let u(t,x) $(x \in X, t > 0)$ be a function on $(0,+\infty) \times X$. Let $u(t,\cdot) \in L^1 + L^\infty(X)$. We say that u is a subharmonic function (with respect to the semigroup Q_t) if

$$Q_t u(s,\cdot) \ge u(t+s,\cdot), \ t,s>0$$

The proof of the following lemma can be found in [2] (Theorem 2).

Lemma 4. Let $(Q_t; t > 0)$ be a submarkovian symmetric semigroup and let C, n > 0 and $1 \le p < +\infty$ be such that

$$||Q_t f||_{\infty} \le C t^{-n/2p} ||f||_p; \ t > 0, \ f \in L^p.$$

Then for every subharmonic function u(t,x) and every $0 < s < r \le +\infty$ we have

(4)
$$t^{n/2s} \|u(t,\cdot)\|_r \le ct^{n/2r} \sup_t \|u(t,\cdot)\|_s,$$

where constant c depends only on C, n, p, r, s.

2. The main result

Lemma 3 implies that there exists a sequence of positive numbers $w_1 \leq w_2 \leq \ldots$ and an orthonormal basis ϕ_1, ϕ_2, \ldots in $L^2(U)$ for which

$$D\phi_n = w_n \phi_n.$$

Lemma 5. There exists C > 0 such that

$$\sup_{r} \mid \phi_n \mid \leq C w_n^{\frac{2d}{\alpha}}.$$

Proof. Let us notice that

$$S_t \phi_n = \exp(-tw_n)\phi_n$$
.

So,

$$u_n(x,t) = \exp(-tw_n)\phi_n(x)$$

is a harmonic function. Lemmas 2 and 4 give us that

$$\sup_{x} | \exp(-tw_n)\phi_n(x) | \le Ct^{\frac{-2d}{\alpha}} \sup_{t} \left(\int_{U} | \exp(-tw_n)\phi_n(x) |^2 dx \right)^{1/2}.$$

Thus

$$\sup_{x} |\phi_n(x)| \le C \inf_{t} \left(t^{\frac{-2d}{\alpha}} \exp(tw_n) \right).$$

Hence

$$\|\phi_n\|_{\infty} \le Cw_n^{\frac{2d}{\alpha}}.$$

58 W. Cupała

Theorem 1. Let τ_x be a first exit time from a bounded domain U. Let w_1 be the smallest eigenvalue of the infinitesimal generator of S_t . Then for every $\varepsilon > 0$ there exists $C(\varepsilon) > 0$ such that for every $t > \varepsilon$

$$P(t < \tau_x) \le C(\varepsilon) \exp(-w_1 t).$$

Proof. Let us notice that

$$P(t < \tau_x) \le ||S_t \mathbf{1}_U||_{\infty},$$

and that

$$\mathbf{1}_U = \sum_{n=1}^{\infty} a_n \phi_n,$$

where

$$\sum_{n=1}^{\infty} |a_n|^2 = ||\mathbf{1}_U||_2^2 = |U|,$$

and the series is convergent in L^2 . So,

(5)
$$S_t \mathbf{1}_U = \sum_{n=1}^{\infty} a_n \exp(-tw_n) \phi_n.$$

By using Lemma 5 we have that (5) converges uniformly on U and

$$||S_t \mathbf{1}_U||_{\infty} \le C \sum_{n=1}^{\infty} \exp(-w_n t) w_n^{\frac{2d}{\alpha}}.$$

Since,

$$\sum_{n=1}^{\infty} \exp(-w_n t) w_n^{\frac{2d}{\alpha}} \le C(\varepsilon) \exp(-tw_1)$$

we ended the proof.

Corollary 1. For every $\varepsilon > 0$

$$E \exp((w_1 - \varepsilon)\tau_x) < +\infty.$$

References

- [1] D. Levin and M. Solomyak, Rozenblum-Lieb-Cwikel inequality for Markov generators, J. d'Anal. Math. 71 (1997), 173–193.
- [2] N.T. Varopoulos, *Hardy-Littlewood theory for semigroups*, J. Funct. Anal. **63** (1985), 240–260.

Received 25 October 2002