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Abstract

The Varopoulos-Hardy-Littlewood theory and the spectral analysis
are used to estimate the tail of the distribution of the first exit time of
α-stable processes.
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1. Preliminaries

Let ξ(t) (t > 0) be an α-stable process on Rd (d ≥ 3) i.e., it is a Markov
process with the strong Markov property, the transition kernel of which is
given by the convolution with a function pt(x) and the Fourier transform of
pt(x) has a form

p̂t(y) = exp(−t‖y‖α), (1 ≤ α ≤ 2).

The uniformity in time of α–stable processes implies that the family of
operators

Ttf(x) = Ef(ξx(t)), (f ∈ Lp(Rd))

forms a semigroup of contractions.
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Let f ∈ Lp(Rd) (1 ≤ p ≤ ∞) and 1
p + 1

q = 1. The form of p̂t gives us the
following estimation:

‖Ttf‖∞ ≤ ‖pt‖q‖f‖p.

Because

pt(x) =
1

td/α
p1(

x

t1/α
),

we obtain that

‖pt‖q = t
−dp

α ‖p1‖q,

for any 1 ≤ q ≤ +∞. This implies

‖Ttf‖∞ ≤ Ct
−dp

α ‖f‖p (p ≥ 1),(1)

where the constant C depends only on p.
Let U be a bounded domain in Rd. Let ξ starts in x ∈ U (let us denote

this fact by ξx(t)). Trajectories of such processes are right–continuous and
have left–hand side limits, so we can define the first exit time from U by

τx = inf{t | ξx(t) 6∈ U}.

Lemma 1 . Let U be a domain in Rd and ξx(t) be an α–stable process which
starts in x ∈ U . Let us denote by

Ix(t) = 1{t<τx}

the indicator of the set of all trajectories for which t < τx. Let f ∈ Lp(U),
1 ≤ p ≤ ∞. The family of operators defined by

Stf(x) = Ef(ξx(t))Ix(t)(2)

forms a semigroup of contractions on Lp(U).
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Proof. By using of the strong Markov property of ξ(t) we have

Ix(t)Iξx(t)(s) = Ix(t + s).

Hence

St ◦ Ssf(x) = E Ssf(ξx(t))Ix(t) =

= E(E f(ξξx(t)(s))Iξx(t)(s))Ix(t) =

= Ef(ξx(t))Ix(t + s).

So, St ◦ Ss = St+s.

The estimation (1) implies

Lemma 2 . Let f ∈ Lp(U), 1 ≤ p ≤ ∞. Then

‖Stf‖∞ ≤ Ct
−dp

α ‖f‖p,(3)

where constant C depends only on p, d, α.

Let D be the infinitesimal generator of St and let N(λ) denote the
dimension of its spectral projector P (−∞, λ).

Lemma 3 . For any bounded domain U there exists a constant C such that
for every λ ≥ 0

N(λ) ≤ Cλ
d
α .

Proof. By (3) and the Varopoulos theory ([2], Theorem 1) we have

‖f‖2d/(d−α) ≤ C‖D 1
2 f‖2, f ∈ Dom

(
D

1
2

)
.

So, by the Levin–Solomyak generalization of the CLR inequality (see [1]),
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for any V ≥ 0, V ∈ L
d
α (U) the number of the negative eigenvalues of the

operator D − V has an upper bound equals to

C1

∫

U
V

d
α dx,

with some constant C1 which depends only on α and U . Hence, for any
λ > 0, the operator D−λId has a finite number of the negative eigenvalues
and, because this number is equal to N(λ), we have

N(λ) ≤ C1 | U | λ d
α .

Let (X,µ) be a σ–finite measure space and let Qt (t > 0) be a sub-
markovian (strongly continuous) symmetric semigroup, i.e., for all t > 0,
Qt : L2(X) −→ L2(X) is a symmetric operator, and for all f ∈ L2 with
0 ≤ f ≤ 1 we have 0 ≤ Qtf ≤ 1 (we note that St is such a semigroup).

Definition 1 . Let u(t, x) (x ∈ X, t > 0) be a function on (0, +∞) × X.
Let u(t, ·) ∈ L1 + L∞(X). We say that u is a subharmonic function (with
respect to the semigroup Qt) if

Qtu(s, ·) ≥ u(t + s, ·), t, s > 0

The proof of the following lemma can be found in [2] (Theorem 2).

Lemma 4 . Let (Qt; t > 0) be a submarkovian symmetric semigroup and
let C, n > 0 and 1 ≤ p < +∞ be such that

‖Qtf‖∞ ≤ Ct−n/2p‖f‖p; t > 0, f ∈ Lp.

Then for every subharmonic function u(t, x) and every 0 < s < r ≤ +∞ we
have

tn/2s‖u(t, ·)‖r ≤ ctn/2r sup
t
‖u(t, ·)‖s,(4)

where constant c depends only on C, n, p, r, s.
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2. The main result

Lemma 3 implies that there exists a sequence of positive numbers w1 ≤
w2 ≤ . . . and an orthonormal basis φ1, φ2, . . . in L2(U) for which

Dφn = wnφn.

Lemma 5 . There exists C > 0 such that

sup
x
| φn |≤ Cw

2d
α

n .

Proof. Let us notice that

Stφn = exp(−twn)φn.

So,

un(x, t) = exp(−twn)φn(x)

is a harmonic function. Lemmas 2 and 4 give us that

sup
x
| exp(−twn)φn(x) |≤ Ct

−2d
α sup

t

(∫

U
| exp(−twn)φn(x) |2 dx

)1/2

.

Thus

sup
x
| φn(x) |≤ C inf

t

(
t
−2d

α exp(twn)
)

.

Hence

‖φn‖∞ ≤ Cw
2d
α

n .
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Theorem 1 . Let τx be a first exit time from a bounded domain U . Let
w1 be the smallest eigenvalue of the infinitesimal generator of St. Then for
every ε > 0 there exists C(ε) > 0 such that for every t > ε

P (t < τx) ≤ C(ε) exp(−w1t).

Proof. Let us notice that

P (t < τx) ≤ ‖St1U‖∞,

and that

1U =
∞∑

n=1

anφn,

where ∞∑

n=1

| an |2= ‖1U‖2
2 =| U |,

and the series is convergent in L2. So,

St1U =
∞∑

n=1

an exp(−twn)φn.(5)

By using Lemma 5 we have that (5) converges uniformly on U and

‖St1U‖∞ ≤ C
∞∑

n=1

exp(−wnt)w
2d
α

n .

Since,

∞∑

n=1

exp(−wnt)w
2d
α

n ≤ C(ε) exp(−tw1)

we ended the proof.

Corollary 1 . For every ε > 0

E exp((w1 − ε)τx) < +∞.
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