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Abstract

The Varopoulos-Hardy-Littlewood theory and the spectral analysis
are used to estimate the tail of the distribution of the first exit time of
a-stable processes.
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1. PRELIMINARIES

Let £(t) (t > 0) be an a-stable process on R? (d > 3) i.e., it is a Markov
process with the strong Markov property, the transition kernel of which is
given by the convolution with a function p;(x) and the Fourier transform of
pi(x) has a form

pe(y) = exp(=t[lyl|*), (1 < a < 2).

The uniformity in time of a—stable processes implies that the family of
operators

T,f(x) = Ef(&(1)), (f € LP(RY))

forms a semigroup of contractions.
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Let f € LP(R?) (1 < p < o0) and % —1—5 = 1. The form of p; gives us the
following estimation:

1T flloo < llpellall Fllp-

Because

1 T
Pt(flf) = Wpl(m)’

we obtain that

—dp
Ipellg = 7= [P g,

for any 1 < g < 4-o00. This implies

(1) ITiflloo < CES | fllp (p > 1),

where the constant C' depends only on p.

Let U be a bounded domain in RY. Let ¢ starts in € U (let us denote
this fact by &;(¢)). Trajectories of such processes are right—continuous and
have left—hand side limits, so we can define the first exit time from U by

7o = inf{t | &(t) ¢ U}

Lemma 1. Let U be a domain in R? and &,(t) be an a—stable process which
starts in x € U. Let us denote by

I-T(t) = 1{t<7’z}

the indicator of the set of all trajectories for which t < 1,. Let f € LP(U),
1 <p<oo. The family of operators defined by

(2) Sif (x) = Ef(8(t)) Lo ()

forms a semigroup of contractions on LP(U).
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Proof. By using of the strong Markov property of £(¢) we have

Le(t) e, 1) (s) = Le(t + 5).

Hence
SioSsf(x) = ESsf(§:(1))1x(t) =
= E(E f(&,t)(8) e, 1) (8)) (1) =
= Ef(&.()L(t + s).
SO, SioSs = StJrs- u

The estimation (1) implies

Lemma 2. Let f € LP(U), 1 <p < oco. Then

—dp
(3) 1S flloo < Ct7|[ flps

where constant C' depends only on p, d, «.

Let D be the infinitesimal generator of S; and let N(A) denote the
dimension of its spectral projector P(—oo, \).

Lemma 3. For any bounded domain U there exists a constant C' such that
for every A >0

N()\) < CA&.
Proof. By (3) and the Varopoulos theory ([2], Theorem 1) we have

1 1
£ ll2d/(d—a) < CID2 f||2, f € Dom (DE) .

So, by the Levin—Solomyak generalization of the CLR inequality (see [1]),
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forany V >0, V € L%(U) the number of the negative eigenvalues of the
operator D — V has an upper bound equals to

y / Veds,
U

with some constant C7 which depends only on a and U. Hence, for any
A > 0, the operator D — AId has a finite number of the negative eigenvalues
and, because this number is equal to N()), we have

N(\) <O |U| Ae.
|

Let (X,u) be a o—finite measure space and let Q¢ (¢t > 0) be a sub-
markovian (strongly continuous) symmetric semigroup, i.e., for all ¢ > 0,
Q¢ : L*(X) — L%*(X) is a symmetric operator, and for all f € L? with
0 < f<1wehave 0 < Q:f <1 (we note that S is such a semigroup).

Definition 1. Let u(t,z) (z € X, t > 0) be a function on (0, +00) x X.

Let u(t,-) € L* + L®(X). We say that u is a subharmonic function (with
respect to the semigroup Q) if

QtU(S, ) > u(t + s, ')’ t,s >0
The proof of the following lemma can be found in [2] (Theorem 2).

Lemma 4. Let (Q; t > 0) be a submarkovian symmetric semigroup and
let C,n>0and1 < p < +oo be such that

1Q¢tflloe < CLT"?P||fllps t>0, fe€LP.

Then for every subharmonic function u(t,x) and every 0 < s < r < 400 we
have

(4) 2 u(t, )| < et Sup Jut, s,

where constant ¢ depends only on C, n, p, r, s.
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2. THE MAIN RESULT

Lemma 3 implies that there exists a sequence of positive numbers w; <
wo < ... and an orthonormal basis ¢1, ¢2, ... in L?(U) for which

D¢y, = wntn.
Lemma 5. There exists C > 0 such that

2d
sup | ¢, |< Cwy .
X

Proof. Let us notice that

Sipn = exp(_twn)gbn'

So,
up (z,t) = exp(—twy,)dn ()

is a harmonic function. Lemmas 2 and 4 give us that

sup | exp(—twn)én(2) [< ot sup (/U | exp(—twy)dn (@) |* dx)m-
Thus
sup | ¢n(2) [< Cint (t_TM exp(twn)> :
Hence

2d
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Theorem 1. Let 7, be a first exit time from a bounded domain U. Let
wy be the smallest eigenvalue of the infinitesimal generator of Sy. Then for
every € > 0 there exists C(g) > 0 such that for everyt > ¢

P(t < 1) < C(e) exp(—wit).
Proof. Let us notice that

P(t <13) < [|S10] oo,

and that

o0
1y = Z n®n,
n=1
where

oo
Yo lanP=1wl3 =T,
n=1

and the series is convergent in L%. So,

(5) Sily = Z ayp, exp(—twy, ) dp.

n=1

By using Lemma 5 we have that (5) converges uniformly on U and

> 2d
1S:1r]|ee < C Z exp(—wpt)wy" .

n=1

Since,

0 2d
Z exp(—wpt)wy < C(g) exp(—twy)

n=1

we ended the proof. [

Corollary 1. For every e >0

Eexp((w; —€)1z) < 400.
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