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Abstract

The first-order autoregressive model with uniform innovations is
considered. The approximate bias of the maximum likelihood esti-
mator (MLE) of the parameter is obtained. Also, a formula for the
approximate bias is given when a single outlier occurs at a specified
time with a known amplitude. Simulation procedures confirm that our
formulas are suitable. A small sample case is considered only.
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1. Introduction

Consider the following autoregressive model

(1) Yt = ρYt−1 + εt

where the εt’s are i.i.d. and distributed according to a uniform distribution
U(0, 1). Bell and Smith (1986) studied the estimating and testing problem
on the parameter ρ for the model (1). Confidence intervals for ρ are obtained
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in Bickel and Doksum (1977) and in Choi (1980). We assume Y0 distributed
as U(0, 1/(1− ρ)) and observe the segment of observations

(2) Y1, Y2, . . . , Yn, n fixed.

The maximum likelihood estimator (MLE) for ρ is (Bell and Smith, 1986)
ρ̂Y = min2≤t≤n(Yt/Yt−1). Then

(3) E(ρ̂Y − ρ) = E

(
min

2≤t≤n

(
εt

Yt−1

))
.

Since the process is mean stationary with mean m =
1

2(1− ρ)
, we can use the

method proposed by Anděl (1988) in exponential models with substituting
m for Yt−1 in (3) and obtain

E(ρ̂Y − ρ) ' 1
m

E

(
min

2≤t≤n
εt

)
.

The aim of this paper is to approximate the bias of the maximum likelihood
estimator of ρ in the model (1) and in the case of two kinds of contamination
of this model. The first one is obtained when we observe the process

(4) Xt = ρXt−1 + εt + ∆ δt,k, n fixed

where

δt,k =

{
1 if t = k
0 if t 6= k

instead of (1). The other is obtained when we observe the process

(5) Zt = Yt ∀t 6= k and Zk = Yk + ∆

instead of (1), ∆ being a known positive magnitude of the contamination of
(1) which occurs at t = k with 1 < k < n.

The processes (4) and (5) are called an innovation outlier (IO) model and
an additive outlier model respectively (Fox, 1972). An exhaustive simulation
study confirms that our formulas hold.
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2. Non contaminated model

Proposition. When the model (1) is observed, the bias of the maximum
likelihood estimator of ρ can be approximated by the expression

(6) B0(ρ, n) ' 2(1− ρ)
n

.

Proof. Using Anděl’s method, the bias of ρ̂Y is approximated by

E(ρ̂Y − ρ) ' 1
m

E

(
min

2≤t≤n
εt

)
.

Since the random variable S = min2≤t≤n εt is distributed according to
Beta(1, n− 1), we obtain

E(ρ̂Y − ρ) ' 1
nm

=
2(1− ρ)

n
.

Comment 1. For a given n, if 0 < ρ < 1, the maximal bias is approxima-
tively 2/n.

Comment 2. The formula (6) can be used as a method of reduction of the
bias. Indeed, the modified estimator ρ̃Y = (nρ̂Y − 2)/(n− 2) has a smaller
bias than the MLE.

In order to illustrate that, we simulate n observations from the model
(1) for a given n and ρ. The following Table 1 presents simulated values of
the bias of the MLE and the modified estimator given above for n = 10, 20
and ρ = 0.2, 0.4, 0.6.

n ρ ρ̂Y ρ̃Y

0.2 0.1403 0.1209

10 0.4 0.0895 0.0779

0.6 0.0560 0.0484

0.2 0.0744 0.0581

20 0.4 0.0467 0.0367

0.6 0.0282 0.0223

Table 1. Simulated values of the bias of ρ̂Y and ρ̃Y , 100000 runs.
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3. Innovation outlier model

When the IO model (4) is observed, the MLE estimator of ρ is

(7) ρ̂X = min{X2/X1, X3/X2, . . . , Xn/Xn−1}.
Since

Xt = Yt ∀t < k and Xt = Yt + ρt−k∆ for k ≤ t ≤ n

the bias of ρ̂X can be approximated in the same way by

E(ρ̂X − ρ) '

E(min{ε2/m, ε3/m, . . . , (εk + ∆)/m, εk+1/(m + ∆), . . . , εn/(m + ρn−k−1∆)}).

Let us introduce the notations : δ0 =
−m +

√
m2 + 4m

2
and

W = {ε2/m, ε3/m, . . . , (εk + ∆)/m, εk+1/(m + ∆), . . . , εn/(m + ρn−k−1∆)}.
Then, the probability distribution of W can be given in the two following
cases:

Case 1. 0 ≤ ∆ ≤ δ0

FW (x) =




0 if x < 0

1−(1−mx)k−2
n−k−1∏

j=0

(
1−mx−

(
2m− 1

2m

)j

∆x

)
if 0 ≤ x < ∆/m

1−(1−mx)k−2(∆ + 1−mx)
n−k−1∏

j=0

(1−mx−
(

2m− 1
2m

)j

∆x)

if ∆/m ≤ x < 1/(m + ∆)

1 if x ≥ 1/(m + ∆)
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Case 2. ∆ > δ0

FW (x) =





0 if x ≤ 0

1−(1−mx)k−2
n−k−1∏

j=0


1−mx−

(
2m− 1

2m

)j

∆x


 if 0<x< 1/(m+∆)

1 if x ≥ 1/(m + ∆)

Since analytic treatments of the function FW (.) are rather complicated, we
propose to give the expression of the approximate bias Bn,m(∆) of estimator
for n = 3.

For example, if n = 3 and k = 2, then

W = min

{
ε2 + ∆

m
,

ε3

m + ∆

}
.

The expression of FW (.) becomes:

Case 1. 0 ≤ ∆ ≤ δ0

FW (x) =





0 if x < 0

(∆ + m)x if 0 ≤ x < ∆/m

1−(1 + ∆−mx)(1−mx−∆x) if ∆/m ≤ x < 1/(m + ∆)

1 if x ≥ 1/(m + ∆)



20 K. Nouali and H. Fellag

Case 2. ∆ > δ0

FW (x) =





0 if x ≤ 0

(m + ∆)x if 0 ≤ x < 1/(m + ∆)

1 if x ≥ 1/(m + ∆)

Using easy computations, we obtain the expression of the approximation of
the bias of ρ̂X :

(8)

B3,m(∆) =




(∆6+3m∆5+m(m−1)∆4+m2(m−6)∆3+3m2(1−m)∆2+3m2(1+m)∆+2m3

6m2(m+∆)2

if 0 ≤ ∆ < δ0

1
2(m+∆)

if δ ≥ δ0

One can remark that

(i) B3,m(0) = 1
3m =

2(1− ρ)
3

.

(ii) lim∆−→+∞B3,ρ(∆) = 0.

For every n, we can use the expressions of FW (.) to obtain the approximate
bias of the estimator with numerical integration.

To illustrate the given formulas, Table 2 presents approximated and
simulated values of the bias for ρ = 0.5 and n = 3, 5, 10. The simulated bias
is calculated using the expression of ρ̂X (formula (7)).
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n = 3 , k = 2 n = 5 , k = 3 n = 20 , k = 18

∆ Approx. Simul. Approx. Simul. Approx. Simul.

0 0.333 0.353 0.200 0.218 0.050 0.049

0.1 0.357 0.372 0.211 0.213 0.051 0.051

0.2 0.365 0.373 0.214 0.233 0.051 0.051

0.3 0.362 0.366 0.211 0.230 0.051 0.050

0.4 0.349 0.356 0.205 0.222 0.050 0.050

0.5 0.332 0.343 0.197 0.214 0.050 0.049

0.6 0.312 0.331 0.189 0.205 0.050 0.049

0.7 0.294 0.318 0.181 0.197 0.049 0.049

0.8 0.277 0.306 0.174 0.189 0.049 0.048

0.9 0.263 0.293 0.167 0.181 0.048 0.048

1.0 0.250 0.281 0.161 0.174 0.048 0.048

5 0.083 0.087 0.063 0.065 0.035 0.035

10 0.045 0.046 0.036 0.036 0.025 0.025

20 0.023 0.024 0.019 0.019 0.015 0.015

50 0.009 0.009 0.008 0.008 0.007 0.007

Table 2. Approximated and simulated values of the bias. ρ = 0.5,
100000 runs.

One can notice that the simulated and approximated values seems to be
close especially when ∆ and n big enough. This allows us to say that the
approximation is valid. Also, we remark that the bias grows until a maximal
value, which lies in [0, δ0] and decreases to zero when ∆ tends to infinity.
For example, when n = 5 and k = 3, the maximal value is 0.211.

Comment 3. Notice that the quantity

min{ε2/m, ε3/m, . . . , (εk + ∆)/m, εk+1/(m + ∆), . . . , εn/(m + ρn−k−1∆)}
tends to zero when ∆ leads to infinity. This allows us to say that the bias
tends to zero when ∆ grows to infinity.
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4. Additive outlier model

Now, assume that we observe the segment

Z1, . . . , Zn, n fixed

of the process defined by the model (5).

The MLE estimator of ρ is

(9) ρ̂Z = min{Z2/Z1, Z3/Z2, . . . , Zn/Zn−1}.

Since

Zt = Yt ∀t 6= k and Zk = Yk + ∆

we can, as in Section 3 approximate the bias of the estimator ρ̂Z by

E(ρ̂Z−ρ) '

1
m

E

(
min

{
ε2, ε3, . . . , εk−1, (εk+∆),

(εk+1−(2m−1
2m )∆)m

(m + ∆)
, εk+2, . . . , εn

})
.

The distribution function of the random variable

T = min

{
ε2, ε3, . . . , εk−1, (εk + ∆),

(εk+1 − (2m−1
2m )∆)m

(m + ∆)
, εk+2, . . . , εn

}

can be given in the three following cases:
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Case 1. 0 ≤ ∆ < 1/2

FT (x) =




0 if x <
−(2m−1)∆

2(m+∆)

m+∆
m

x+
(2m−1)∆

2m
if
−(2m−1)∆

2(m+∆)
≤ x ≤ 0

1−(1−x)n−3

(
1−m+∆

m
x− (2m−1)∆

2m

)
if 0 ≤ x < ∆

1−(1−x+∆)(1−x)n−3

(
1−m+∆

m
x− (2m−1)∆

2m

)
if ∆ ≤ x ≤ 2m−(2m−1)∆

2(m+∆)

1 if x ≥ 2m−(2m−1)∆
2(m+∆)

Case 2. 1/2 ≤ ∆ < 2(m+∆)
2m−1

FT (x) =





0 if x <
−(2m−1)∆

2(m+∆)

m+∆
m

x+
(2m−1)∆

2m
if
−(2m−1)∆

2(m+∆)
≤ x ≤ 0

1−(1−x)n−3

(
1−m+∆

m
x− (2m−1)∆

2m

)
if 0 ≤ x <

2m−(2m−1)∆
2(m+∆)

1 if x ≥ 2m−(2m−1)∆
2(m+∆)

Case 3. ∆ ≥ 2m
2m−1

FT (x) =





0 if x <
−(2m−1)∆

2(m+∆)

m+∆
m

x+
(2m−1)∆

2m
if

−(2m−1)∆
2(m+∆)

≤ x ≤ 2m−(2m−1)∆
2(m+∆)

1 if x ≥ 2m−(2m−1)∆
2(m+∆)
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For every n, the expression of the approximate bias is

(10)

Bn,m(∆) =




1
2nm2In

{
(∆(2m−1))n

(2∆+2m)n−1
Φ(1)

m,n,∆−nΦ(2)
m,n,∆−(1−∆)n−3Φ(3)

m,n,∆

}
if 0 ≤ ∆ < 1/2

1
2m2

{
−(∆(2m−1))2

4(m+d)
+

1
In

(
(∆(2m+1))n−1

(2∆+2m)n−2
−Φ(2)

m,n,∆

)}
if 1/2≤ ∆ <

2m

2m−1

m−(2m−1)∆
2m(m+∆)

if ∆ ≥ 2m

2m−1

with

In = (n− 1)(n− 2),

Φ(1)
m,n,∆ = 2n∆ + 4m(n− 1) + n− 2,

Φ(2)
m,n,∆ = (2m(n− 1)− n + 3)∆ + 2m(2− n),

Φ(3)
m,n,∆ = 2m(n− 2) + ∆(m(24n2 − 8n− 12) + n− 4)

+∆2(m(−10n− 12) + 12− 4n)

+∆3(4m(1− n)− 21n− 12)−∆4(2n− 4).

Remarks.

(i) Bn,m(0) = 2(1− ρ)/n.

(ii) lim∆−→+∞Bn,m(∆) = −ρ, ∀n.

(iii) Bn,m(∆) = Bn′,m(∆), ∀n, n′, ∀∆ ≥ 2m
2m−1 .
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Application.
Table 3 presents the approximated values of the MLE’s bias using formula
(10) and simulated results obtained with formula (9) for n = 3, 5, 20 and
ρ = 0.5. To see if our formula is suitable, the results are compared.

n = 3 , k = 2 n = 5 , k = 3 n = 20 , k = 15

∆ Approx. Simul. Approx. Simul. Approx. Simul.

0 0.333 0.329 0.200 0.179 0.050 0.046

0.1 0.328 0.325 0.200 0.180 0.049 0.044

0.2 0.304 0.301 0.190 0.169 0.046 0.038

0.3 0.268 0.265 0.173 0.151 0.043 0.031

0.4 0.227 0.221 0.153 0.128 0.040 0.022

0.5 0.166 0.175 0.111 0.104 0.016 0.012

0.6 0.124 0.131 0.086 0.079 0.006 0.002

0.7 0.088 0.092 0.059 0.054 0.004 -0.008

0.8 0.055 0.057 0.035 0.031 -0.016 -0.020

0.9 0.026 0.027 0.012 0.008 -0.028 -0.032

1.0 0.000 -0.001 -0.009 -0.012 -0.040 -0.044

1.5 -0.100 -0.102 -0.100 -0.102 -0.104 -0.107

2 -0.166 -0.169 -0.166 -0.168 -0.166 -0.169

5 -0.333 -0.334 -0.333 -0.334 -0.333 -0.334

10 -0.409 -0.409 -0.409 -0.409 -0.409 -0.409

20 -0.452 -0.452 -0.452 -0.452 -0.452 -0.452

50 -0.480 -0.480 -0.480 -0.480 -0.480 -0.480

100 -0.490 -0.490 -0.490 -0.490 -0.490 -0.490

Table 3. Approximated and simulated values of the bias. ρ = 0.5,
100000 runs.

As in Section 3, notice that the approximated and the simulated values of
the bias seems to be close especially when ∆ and n big enough.
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In all simulation results, we remarked that the position k has no effect on
the value of the bias in the two kinds of contamination. Perhaps, one can
say that the reason is that a change in the position k of the contaminant
has no influence on the distribution of the random variables W and T .

5. Conclusions

In this work, we obtained the approximate bias of the MLE estimator of the
AR(1) parameter. This has been used to reduce the bias of this estimator.
Again, when an outlier occurs at a specified time with a known amplitude,
a method of approximation of this bias is obtained with an explicit formula
in the case of additive outlier contamination. Also, this work shows that the
AO has a significant and IO has little effect on the estimated parameter.
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