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Abstract

The construction of some optimum chemical balance weighing de-
signs from affine µ-resolvable balanced incomplete block (BIB) designs
are discussed in the light of a characterization theorem on the pa-
rameters of affine µ-resolvable BIB designs as given by Mohan and
Kageyama (1982), for the sake of practical use of researchers who
need some selective designs for the construction of chemical balance
weighing designs.
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1. Introduction

A balanced incomplete block (BIB) design with parameters v, b, r, k, λ is a
block design with v treatments and b blocks of size k each such that every
treatment occurs in exactly r blocks and that any two distinct treatments
occur together in exactly λ blocks. In the BIB design, if the b blocks are
partitioned into t sets of m blocks each such that in each of the sets every
treatment occurs exactly µ times, then the design is said to be µ-resolvable.
Moreover, when any two blocks belonging to the same set (different sets)
contain q1 (q2, respectively) treatments in common, the µ-resolvable BIB
design is called affine µ-resolvable (denoted by µ-ARBIB design). When
µ = 1, an (affine) 1-resolvable design is simply called an (affine) resolvable
design (see Bose, 1942; Raghavarao, 1988; Kageyama and Mohan, 1983).

In a µ-ARBIB design, it is known that b = mt, r = µt, bµ = mk, b =
v + t− 1, q1 = (µ− 1)k/(m− 1) = k + λ− r, q2 = k2/v.

Some optimum chemical balance weighing designs were constructed
by establishing certain relations between BIB designs and these weigh-
ing designs by many authors, for example, see Nigam (1974), Dey (1979),
Kageyama and Saha (1983), and Ceranka and Katulska (1987). In this
context, Saha (1975) has proved the following two theorems.

Theorem 1.1. The existence of a BIB design with parameters v, b, r, k, λ
satisfying b ≤ 4(r−λ) implies the existence of an optimum chemical balance
weighing design for v objects and in 4(r − λ) weighings.

Theorem 1.2. The existence of an affine resolvable BIB (ARBIB) design
with parameters v = 2k, b = 2r, r = v − 1, k, λ implies the existence of an
optimum chemical balance weighing design for r objects and in v weighings.

Furthermore, Kageyama and Saha (1983), while investigating BIB designs
that satisfy b ≤ 4(r − λ), established the following two propositions using
Theorems 1.1 and 1.2.

Proposition 1.1. An ARBIB design with parameters v, b, r, k, λ satisfying
b ≤ 4(r − λ) has one of the following parameters

(i) v = 9, b = 12, r = 4, k = 3, λ = 1;

(ii) v = 4(t + 1), b = 2(4t + 3), r = 4t + 3, k = 2(t + 1), λ = 2t + 1

for a non-negative integer t.
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Then, by Theorems 1.1 and 1.2, the existence of the BIB designs given in
Proposition 1.1 shows the existence of optimum chemical balance weighing
designs for 9, 4t + 3, 4(t + 1) objects and in 12, 4(t + 1), 8(t + 1) weighings,
respectively.

Note that in Proposition 1.1 the series (ii) is self-complementary. It is
obvious that any BIB design with parameters v, b, r, k, λ and its complemen-
tary BIB design with parameters v∗ = v, b∗ = b, r∗ = b − r, k∗ = v − k,
λ∗ = b− 2r + λ simultaneously either satisfy or do not satisfy b ≤ 4(r − λ),
because, in case of the complementary design, b∗ = b and r∗ − λ∗ = r − λ.
The last observation is helpful for our further characterization in the next
section.

Proposition 1.2. The existence of an affine resolvable s-associate partially
balanced incomplete block (PBIB) design with parameters v, b, r, k, λi, ni, p

i
j`

(i, j, ` = 1, 2, ..., s) satisfying
∑

λi>0 ni ≤ 4k(v − k)/v implies the existence
of an optimum chemical balance weighing design for r objects in 4k(v−k)/v
weighings, where the summation extends over i(i = 1, 2, ..., s) such that
λi > 0.

Kageyama and Saha (1983, p. 450, lines 34–36) pointed out that the general-
ization of Propositions 1.1 and 1.2 to the affine µ-resolvability is immediate,
for the reason that the complement of an ARBIB design is in general a µ-
ARBIB design for some µ. This remark is the starting point for the present
discussions.

2. Discussions

Now, regarding the existence of optimum chemical balance weighing designs,
we will have a rigorous investigation on all µ-ARBIB designs, in the light of
a characterization theorem on the parameters of µ-ARBIB designs as given
by Mohan and Kageyama (1982). In fact, there are six series of µ-ARBIB
designs, which have to be considered now, for the practical purposes of the
researchers to choose the design as per one’s need.

In Kageyama and Saha (1983), some of the µ-ARBIB designs are taken
as complements of ARBIB designs, as it is a method of construction of those
designs. In fact, they have considered these µ-ARBIB designs for some µ,
i.e., as in the case (ii) of Theorem 2.1 given by Mohan and Kageyama (1982),
m = µ + 1. When an ARBIB design satisfies the condition b ≤ 4(r − λ),
then its complement which is a µ-ARBIB design also satisfies this condition,
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and hence it needs no further study. For an ARBIB design that is self-
complementary, its complement is again an ARBIB design.

But there are some designs which do not satisfy b = 2r and also are µ-
ARBIB designs. In the ARBIB designs, i.e., µ = 1, and this is just the first
case of the characterization theorem in Mohan and Kageyama (1982). In
the other cases depending on the satisfaction of the condition b ≤ 4(r − λ),
we can speak of the existence of the optimum chemical balance weighing
designs. But, when we consider µ-ARBIB designs, it is puzzling for the
practical researcher for which a µ-ARBIB design is to be selected, for the
construction of optimum chemical balance weighing designs. We will aim at
bridging this gulf.

The chacterization theorem by Mohan and Kageyama (1982) is stated
as follows.

Theorem 2.1. Let D be a µ-ARBIB design with parameters v, b = mt, r =
µt, k, λ, then exactly one of the following is true.

(1) µ = 1, i.e., D is an ARBIB design;

(2) m = µ + 1 and D is the complement of an ARBIB design;

(3) m = 2µ + 1 or 2µ− 1;

(4) m = 2µ + a1 or 2µ− a1 with a1 = m1/2 an integer;

(5) m = 2µ + a2 or 2µ− a2 with a2 = (2m− 1)1/2 an integer;

(6) m = 2µ + a3 or 2µ − a3 with a3 = [`(m − 1) + m]1/2 an integer and
` ≥ 2.

Here, Remark 2.2 in Mohan and Kageyama (1982) states that the designs
with m = 2µ − 1, 2µ − a1, 2µ − a2 and 2µ − a3 are the complements of the
designs with m = 2µ + 1, 2µ + a1, 2µ + a2 and 2µ + a3, respectively. Besides
µ = 1 and m = µ+1 are also complements to each other. Thus Proposition
1.1 and the remark of Kageyama and Saha (1983) deal with the cases of (1)
and (2) of the above Theorem 2.1, i.e., when µ = 1 the designs are ARBIB
designs and when m = µ+1 these are complements the case (1), i.e., µ = 1.
The µ-ARBIB design with parameters v = 9, b = 12, r = 8, k = 6, λ = 5,
where m = 3 and µ = 2, are considered there. Now, the remaining cases
(3), (4), (5) and (6) are yet to be discussed.

As said earlier, the characterization theorem leads to six series of µ-
ARBIB designs for µ ≥ 1. We deal with all of them now for the sake of
completeness.
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Theorem 2.1 Case (1). When µ = 1, the design is an ARBIB design
whose parameters are expressed by

v = m2[z(m− 1) + 1], b = m(zm2 + m + 1), r = zm2 + m + 1,

(2.1) k = m[z(m− 1) + 1], λ = zm + 1

where z is a non-negative integer (see also Bose, 1942).
Now, it follows that b ≤ 4(r − λ) iff z(m − 2)2 + m − 3 ≤ 0. Hence

the solutions are given by (i) m = 2 and any z, and (ii) m = 3 and z = 0.
Kageyama and Saha (1983) have already dealt with Case (1), and obtained
a subseries out of this series for this purpose in the above two cases.

In the case (i) the ARBIB design we get has the parameters v = 9, b =
12, r = 4, k = 3, λ = 1, which does not satisfy b = 2r, and its complement
has v = 9, b = 12, r = 8, k = 6, λ = 5, which are the parameters of a µ-
ARBIB design for m = 3 and µ = 2. Again both of these designs satisfy
b ≤ 4(r− λ), and their existence implies the existence of optimum chemical
balance weighing designs by Theorem 1.1.

And the case (i), i.e., when m = 2, yields the parameters

(2.2) v = 4(z + 1), b = 2(4z + 3), r = 4z + 3, k = 2(z + 1), λ = 2z + 1.

In fact, the design with parameters (2.2) is of the form 2k, 2r, r, k, λ, and
also satisfies the condition b ≤ 4(r − λ). Hence it follows from Theorems
1.1 and 1.2 that “the existence of the design with parameters (2.2) implies
the existence of optimum chemical balance weighing designs for (a) 4(z + 1)
objects and in 8(z + 1) weighings, and for (b) 4z + 3 objects and in 4(z + 1)
weighings.”

Theorem 2.1 Case (2). When m = µ + 1, the series are expressed by

v = m2(yµ + 1), b = m[m2(yµ + 1)− 1]/µ, r = m2(yµ + 1)− 1,

(2.3) k = mµ(yµ + 1), λ = mµ(yµ + 1)− 1

for a non-negative integer y. Then the required condition can be obtained
from b ≤ 4(r − λ) as

(2.4) (µ− 1)2(yµ + 1) ≤ 1
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which holds only when (i) y = 0 and µ = 2, and (ii) y ≥ 1 and µ = 1.
For the case (i), the corresponding design, when µ = 1, i.e., m = 2,

has v = 4, b = 6, r = 3, k = 2, λ = 1, which provides an ARBIB design
with b = 2r. When µ = 2, i.e., m = 3, the corresponding design has
v = 9, b = 12, r = 8, k = 6, λ = 5, which is a µ-ARBIB design with µ = 2.
Both of these designs satisfy the required condition b ≤ 4(r− λ), and hence
we have that “the existence of the design with parameters (2.3) for y = 0
and µ = 2 implies the existence of three optimum chemical balance weighing
designs for 3 objects and in 4 weighings, for 4 objects and in 8 weighings,
and for 9 objects and in 12 weighings.”

In the case (ii), i.e., µ = 1, also the parametric relations are the same
as in Case 1. So as m = 2, we have

(2.5) v = 4(y + 1), b = 2(4y + 3), r = 4y + 3, k = 2(y + 1), λ = 2y + 1.

As the parametric relations of (2.2) and (2.5) are the same when m = 2, no
further treatment is required. But when m ≥ 3, as the condition (2.4), i.e.,
(µ− 1)2(yµ + 1) ≤ 1 fails, we can infer that “the existence of the µ-ARBIB
design of series (2.3) (when m ≥ 3, y ≥ 1) does not imply the existence of an
optimum chemical balance weighing design” is dependent on the fulfilment
of the codition b ≤ 4(r − λ). But we consider µ-ARBIB designs in the light
of the characterization theorem given by Mohan and Kageyama (1982) for
all the cases.

Thus, it is more interesting to investigate further whether there is any
design or series which is affine µ-resolvable, and possibly its existence implies
the existence of optimum chemical balance weighing designs. So we consider
the other cases of Characterization Theorem 2.1.

Theorem 2.1 Case (3). When m = 2µ + 1, the series are expressed by

v = m2(2dµ + 1), b = m[m2(2dµ + 1)− 1]/(2µ), r = [m2(2dµ + 1)− 1]/2,

(2.6) k = mµ(2dµ + 1), λ = [mµ(2dµ + 1)− 1]/2

for a non-negative integer d. Then the required condition can be obtained
from b ≤ 4(r − λ) as

2dµ + 1 ≤ 1.

This is valid only when (i) d = 0 and any m ≥ 3. Then the series becomes

v = m2, b = m(m+1), r = (m2−1)/2, k = m(m−1)/2, λ = (m2−m−2)/4.
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Since λ is an integer, µ should be an odd integer. When µ = 1 (i.e., m = 3)
in this series, we get an ARBIB design with parameters

(i) v = 9, b = 12, r = 4, k = 3, λ = 1

which has already been dealt with.
When µ = 3 (i.e., m = 7), we get a µ-ARBIB design with parameters

(ii) v = 49, b = 56, r = 24, k = 21, λ = 10.

For the construction of this design refer to Kageyama and Mohan (1983,
p. 119, design no. 184). The existence of this design implies the existence
of an optimum chemical balance weighing design for 49 objects and in 56
weighings.

When µ = 5 (i.e., m = 11), we get a µ-ARBIB design with parameters

(iii) v = 121, b = 132, r = 60, k = 55, λ = 27.

For the construction of this design refer to Kageyama and Mohan (1983, p.
120, design no. 229). The existence of this design implies the existence of
an optimum chemical balance weighing design for 121 objects and in 132
weighings.

Thus in this series, “the existence of the designs with the parameters as
mentioned in (i), (ii), (iii) above implies the existence of optimum chemical
balance weighing designs.” For odd µ ≥ 7, we have big designs and hence
they are omitted here. These are not with b = 2r as mentioned earlier in
Kageyama and Saha (1983).

Theorem 2.1 Case (4). When µ = (m + m1/2)/2, i.e., 2µ = m + m1/2,
the series are expressed by

v = m2[α(m− 1) + 1], b = m(αm2 + m + 1), r = µ(αm2 + m + 1),

(2.7) k = mµ[α(m− 1) + 1], λ = µ{[α(m− 1) + 1]mµ− 1}/(m− 1)

for a non-negative integer α. Then the required condition in this case can
also be obtained from b ≤ 4(r − λ) as m(m − 1)(α + 1) ≤ 0, which is
impossible. Hence we have the following observation that “the existence of
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the µ-ARBIB design of this series (2.7) does not imply the existence of an
optimum chemical balance weighing design.”

Theorem 2.1 Case (5). When µ = [m + (2m − 1)1/2]/2, the series are
expressed by

v = m2[β(m− 1) + 1], b = m(βm2 + m + 1), r = µ(βm2 + m + 1),

(2.8) k = mµ[β(m− 1) + 1], λ = µ{[β(m− 1) + 1]mµ− 1}/(m− 1)

for a non-negative integer β. Then the required condition can also be ob-
tained from b ≤ 4(r−λ) as m(m−1)[β(2m−1)+2] ≤ 0, which is impossible.
Hence this leads to a statement “the existence of the µ-ARBIB design of this
series (2.8) does not imply the existence of an optimum chemical balance
weighing design.”

Theorem 2.1 Case (6). When µ = {m + [`(m− 1) + m]1/2}/2, the series
are expressed by

v = m2[ε(m− 1) + 1], b = m(εm2 + m + 1), r = µ(εm2 + m + 1),

(2.9) k = mµ[ε(m− 1) + 1], λ = µ{[ε(m− 1) + 1]mµ− 1}/(m− 1)

for non-negative integers ε and `(≥ 2). It follows that b ≤ 4(r − λ) iff
m{[ε(m−1)+1][`(m−1)+m]−1} ≤ 0, which is impossible. This fact leads
to the statement that “the existence of the µ-ARBIB design of this series
(2.9) does not imply the existence of an optimum chemical balance weighing
design.”

Thus, for all µ-ARBIB designs we can speak of the existence or non-
existence of optimum chemical balance weighing designs by considering all
the cases of Characterization Theorem 2.1 for the sake of practical purposes.

Note 2.1. In the case of PBIB designs, unlike the case of µ-ARBIB designs,
it may be difficult to assess the possibilities of existence or non- existence
of optimum chemical balance weighing designs in terms of PBIB designs.
But, as an example, if we take the series from the following, which was
given in Kageyama and Mohan (1980, Theorem 2.2), then the existence of
a symmetrical BIB design with parameters v = b (being a prime), r = k, λ
implies the existence of an affine r-resolvable semi-regular group divisible
design with parameters v′ = b′ = v2, r′ = k′ = vk, λ1 = vλ, λ2 = k2,
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q1 = λv(= λ1), q2 = k2(= λ2). This resulting design is a symmetrical
PBIB design and its existence implies the existence of an optimum chemical
balance weighing design for v2 objects and in 4k(v − k) weighings, as we
require only linked block type for our purposes (see Kageyama and Saha,
1983, Proposition 4).

Thus the present discussions revealed the existence or non-existence of
optimum chemical balance weighing designs, depending on the existence or
non-existence of µ-ARBIB designs.

Also it needs further study regarding whether the existence of those
µ-ARBIB designs implies the existence of at least best weighing designs as
given in Raghavarao (1959, 1960) also the second best weighing designs as
given in Bhaskararao (1966). However, in the case of µ-ARPBIB designs a
further investigation is still needed.

3. A construction of certain chemical balance

weighing designs

We can first make use of the method of constructions as given in Kageyama
and Mohan (1983) for µ-ARBIB designs and the corresponding optimum
chemical balance weighing designs. Secondly, consider either the complete
or a part of the array as in Kageyama and Mohan (1983, p. 114) . When
the full array is considered, the optimum chemical balance weighing designs
that can be obtained have already been discussed here.

When a part of that array has been considered, the designs that can
be obtained may not be affine µ-resolvable BIB designs but may be PBIB
designs. If such a partial array has been considered, by deleting the first
column or by deleting the first row and the first two columns, we can con-
struct certain chemical balance weighing designs. For example, we consider
the second row of the array and by deleting the first element alone, we will
get an optimum chemical balance weighing design.

Let N be the v × b incidence matrix of a BIB design with parameters
v, b, r, k, λ satisfying b ≤ 4(r − λ). Further let π be the permutation of
the rows R1, R2, ..., Rv of N defined by πRi ≡ Ri+1 (mod v). Also let
N i = πi−1N for i = 1, 2, ..., v, and in each of these matrices N i replace 0 by
−1 and from the following juxtaposition matrix X = [N1 : N2 : · · · : N v],
we can have XX ′ = (b − c)Iv + cJv, where c = b − 4(r − λ), Iv denotes
the identity matrix of order v and Jv denotes the v × v matrix all of whose
elements are unity. This gives an optimum chemical balance weighing design
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by considering the condition b ≤ 4(r − λ). When c = 0, it is trivial. The
other cases can be evaluated if the design is known.

The scientists in the field of Nuclear Chemistry require such designs
where minute quantities of a very few number of objects are given. Then
to avoid hazardous situations and high risk factors in the cases of perilous
explosives and super radioactive elements and to achieve accuracy near to
perfection and to reduce standard error of estimate they go for more and
more weighings.

Example 3.1. Take a BIB design with parameters v′ = b′ = 7, r′ = k′ = 3,
λ′ = 1 with its incidence matrix N . Then we can obtain by Theorem 1.1 an
optimum chemical balance weighing design for 7 objects and in 8 weighings.
If we use the above method, we have X = [N1 : N2 : · · · : N7] which
gives a BIB design with parameters v = 7, b = 49, r = 21, k = 3, λ = 7.
This produces an optimum chemical balance weighing design for 7 objects
and in 56 weighings, which may be of our need and choice with the help
of Characterization Theorem 2.1 and from the methods of construction of
Kageyama and Mohan (1983).

We attain greater efficiency in estimating the weights by weighing the
objects in sets rather than by weighing them just separately. Hence there
will be more weighings. Even though the number of weighings is greater we
can build up the plan of weighings. Consequently we can obtain bounds for
the variance of thus estimated weights.

Note 3.1. In the Remark of Dey (1970), it was stated that as repeated
designs take one or more repetitions it will overcome the drawback for the
estimation of error variance. And then these designs are of much use in the
direction of the optimum chemical balance weighing designs. Furthermore,
in Ceranka and Katulska (1987), they have given a construction of optimum
chemical balance weighing designs, taking various BIB designs with the same
number of treatments. In this the number of copies is fixed as v only.

The discussions regarding the existence or non-existence of optimum
chemical balance weighing designs for other combinatorial configuration are
still open.
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