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Abstract

The one sided unit root test of a first-order autoregressive model
in the presence of an additive outlier is considered. In this paper, we
present a formula to compute the size and the power of the test when
an AO (additive outlier) occurs at a time k. A small sample case is
considered only.
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1. Introduction

Consider a time series {xt} which follows the model

(1) (1− ρB)xt = εt t = . . . ,−1, 0, 1, . . . , n

where {εt}t=1,...,n is a sequence of independent normally distributed random
variables with mean zero and variance σ2 and B denotes the backshift op-
erator such that Bxt = xt−1. We assume that x0 = 0 and, without loss of
generality, σ = 1.
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Suppose that all what we observe is the segment of observations

(2) x1, x2, . . . , xn

and we want to test the hypothesis H0 : ρ = 1 against H1 : ρ < 1.
Testing for unit root in autoregressive time series has attracted great

attention since the pioneer paper by Dickey and Fuller (1979). In their
paper, the authors said that the hypothesis that ρ = 1 is of some interest
in applications since it corresponds to the hypothesis that it is appropriate
to transform the time series by differencing. For applications of unit root
tests, see for example, Diebold (1988), Perron (1989) and Sims and Uhlig
(1991).

There exists a vast litterature on the unit root tests. Dickey and Fuller
(1979) proposed simple unit root tests. Phillips (1987) and Phillips and
Perron (1988) suggested a criteria for correction of the bias in Dickey-
Fuller statistics. Various aspects of the unit root tests are summarized in
Fuller (1996, chap. 10). The tests are essentially based on the least square
estimator of ρ defined by

(3) ρ̂LS =

[
n∑

t=2

xtxt−1

] [
n∑

t=2

x2
t−1

]−1

.

Recently, Tiku and Wong (1998) derived a statistic based on a modified
maximum likelihood estimator of ρ. They studied this statistic when ρ = 1
and the innovations have a symmetric distribution. Shin and Sarkar (1996)
studied an AR(1) process with unit root for which observations available are
irregular in nature. They proposed unit root tests which perform very well
for small samples. To test the hypothesis H0, we use the statistic

(4) T = n(ρ̂LS − 1)

where ρ̂LS is given by formula (3). Assume that, at a position k ∈]1, n[, a
single additive outlier of magnitude ∆ occurs. Hence, instead of the segment
(2), we observe the following observations z1, z2, . . . , zn where

(5) zt = xt ∀t 6= k and zk = xk + ∆
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The process {zt} generated by the contaminant is called additive outlier
model (AO) introduced by Fox (1972). Franses and Haldrup (1994) studied
effects of outliers on unit root Dickey-Fuller tests. They showed that there
is over-rejection of the unit root hypothesis when additive outliers occur.
Also, Shin and et al. (1996) investigated the effects of outliers on unit root
tests in AR(1) and more. They proved that the limiting distribution of T
is affected by an additive outlier. Also, they proposed a method to detect
outliers and to adjust the observations. Maddala and Rao (1997) argue
that the standard Dikey-Fuller unit root tests face more trouble the more
frequently AO occurs or the larger their impacts are. However, when n goes
to infinity, the impacts of finite additive outliers will go to zero. Vogelsang
(1999) proposed two robust procedures to detect outliers and adjust the
observations.

In the case of small samples, very little is known to compute the power
of the unit root test. In this paper, we derive a formula for the size and the
power of the unit root test when a single AO contaminant occurs and when
the statistic n(ρ̂LS − 1) is used.

2. Gaussian model

In this section, we propose to calculate the value of the size α =
PH0(n(ρ̂LS − 1) < c) for a given value of the constant c.

Let us introduce the following notations: X = (x1,x2, . . . ,xn)T - vector
of the observations, E = (ε1, ε2, . . . , εn)T - vector of innovations and the
nxn-matrix generated by the coefficient ρ denoted A = (aij)i,j=1,...,n and
defined by

aij =





ρi−j if i ≥ j i, j = 1, . . . , n

0 else where.

Then, we have the relation X = AE. Also, the least square estimator of ρ
can be written as a ratio of two quadratic forms:

ρ̂LS =
[
XT R1X

] [
XT R2X

]−1

with
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R1 =




0 1/2 0 . . . 0

1/2 0
. . . . . . 0

...
...

. . . . . .
...

0 0
. . . 0 1/2

0 0 . . . 1/2 0




and R2 =




1 0 0 . . . 0

0 1 0 . . . 0
...

...
. . . . . .

...

0 0 . . . 1 0

0 0 . . . 0 0




.

Since X = A.E, we obtain ρ̂LS =
[
ET LE

] [
ET ME

]−1
with L = AT R1A

and M = AT R2A. If we use the notation c′ = 1 + c/n, we have,

PH0(n(ρ̂LS − 1) < c) = PH0(ρ̂LS < c′)=PH0

(
ET .(L− c′M

)
.E < 0)

= PH0

(
ET.AT(R1−c′R2

)
.A.E <0)=PH0

(
ET.B.E <0

)

where B = AT (R1 − c′R2).A.
To compute PH0(n(ρ̂LS − 1) < c), we use the formula given by Imhof

(1961) which gives

(6) PH0(n(ρ̂LS − 1) < c) = 0.5− 1
π

∫ ∞

0

sin f(u)
ug(u)

du

where

f(u) =
1
2

n∑

i=1

Tan−1(λiu) and g(u) =
n∏

1

(
1 + λ2

i u
2
)1/4

λ1, λ2, . . . , λn being the eigenvalues of the matrix B. The value of the integral
is obtained using a numerical method. In this paper, the Gauss method is
used.
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3. Additive outlier model

Assume that an additive outlier of magnitude ∆ occurs at a time k (1 <
k < n). Then, the observed sample is z1, z2, . . . , zn obtained with formula
(5). Now, we compute the value of PH0(n(ρ̂∗LS − 1) < c) where

(7)

ρ̂∗LS =

[
n∑

t=2

ztzt−1

] [
n∑

t=2

z2
t−1

]−1

=

[
n∑

t=2

xtxt−1 + ∆(xk−1 + xk+1)

] [
n∑

t=2

x2
t−1 + 2∆xk + ∆2

]−1

.

Let us introduce the following notations:

Z = (z1, z2, . . . , zn)T and Y = (y1, y2, . . . , yn)T where

yt = εt ∀t 6= k, k + 1 and yk = εk + ∆, yk+1 = εk+1 −∆.

Then, we have Z = AY and

PH0(n(ρ̂∗LS − 1) < c) = PH0(ρ̂
∗
LS < c′) = PH0(Y

T AT (R1 − c′R2)AY < 0)

where c′ is defined above. Using Imhof’s formula, we obtain the value of
PH0(n(ρ̂∗LS − 1) < c) in the presence of an additive outlier contamination

(8) PH0(n(ρ̂∗LS − 1) < c) = 0.5− 1
π

∫ ∞

0

sin f∗(u,∆)
ug∗(u,∆)

du

where
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f∗(u,∆) = f(u) +
∆2u

2

n∑

i=1

λi(Qk,i −Qk+1,i)2

1 + λ2
i u

2

and

g∗(u,∆) = g(u)exp

{
∆2u2

2

n∑

i=1

λ2
i (Qk,i −Qk+1,i)2

1 + λ2
i u

2

}

λ1, λ2, . . . , λn being the same eigenvalues of the matrix B (see Section 2).
Qk,i and Qk+1,i are the (k, i) and (k + 1, i) element of the orthogonal
matrix Q containing the normalized eigenvectors of B respectively.
Using numerical integration of the integral given in (8), we can obtain nu-
merical approximations of the size of the unit root test in the contaminated
model.

The power of the test for a given ρ = ρ0 is easily obtained in the same
way by assuming that yk+1 = εk+1−ρ0∆. Then, we derive the formula given
above by replacing (Qk,i−Qk+1,i)2 with (Qk,i−ρ0Qk+1,i)2 in the expression
of f∗(u,∆) and g∗(u,∆).

Since the formula (8) depends on ∆2 only, we can say that, positive and
negative values of ∆ have the same effect on the size and the power.

Table 1 presents, as application, some values of the power of the 5 %
level test when ρ = 0.5, 0.7, 0.8, 0.9, 0.95, 1.0 and ∆ = 0, 1, 2, 3, 4, 5. The
critical values of the 5 % level test obtained using simulation procedure are,
for n = 5, 10, 25, -5.612, -6.5575 and - 7.3800 respectively.

Notice that when ρ = 1.0, we obtain the size of the unit root test
and the value corresponding to n = 25 is the same than of Fuller
(1996, p. 641).

We note that the size and the power of the test are really affected by
the presence of an AO. When ∆ tends to infinity, ρ̂∗LS tends to zero (see
formula 7) and then, the size and the power tend to one.

When an additive outlier is detected and the magnitude is estimated
(see, e.g. Shin et al., 1996 or Abraham and Box, 1979), the method presented
in this paper allows us to assess exactly the impact of this contaminant on
the size and the power of the unit root test.
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Table 1. Variation of the power of the test with ∆

∆

n ρ 0 1 2 3 4 5

0.5 0.1466 0.1856 0.2531 0.2881 0.3041 0.2996

0.7 0.0948 0.1315 0.1986 0.2463 0.2702 0.2788

5 0.8 0.0764 0.1103 0.1711 0.2190 0.2458 0.2593

0.9 0.0618 0.0924 0.1481 0.1905 0.2172 0.2334

0.95 0.0557 0.0846 0.1366 0.1762 0.2020 0.2186

1.0 0.0502 0.0775 0.1257 0.1623 0.1867 0.2031

0.5 0.3606 0.4093 0.5235 0.6455 0.7447 0.8187

0.7 0.1799 0.2239 0.3352 0.4709 0.5946 0.6932

10 0.8 0.1202 0.1554 0.2510 0.3747 0.4967 0.6011

0.9 0.0781 0.1051 0.1803 0.2824 0.3894 0.4886

0.95 0.0625 0.0857 0.1507 0.2403 0.3362 0.4279

1.0 0.0500 0.0696 0.1250 0.2020 0.2856 0.3674

0.5 0.9339 0.9441 0.9659 0.9846 0.9948 0.9986

0.7 0.5917 0.6299 0.7245 0.8314 0.9141 0.9628

25 0.8 0.3392 0.3761 0.4769 0.6126 0.7460 0.8509

0.9 0.1490 0.1717 0.2387 0.3425 0.4665 0.5908

0.95 0.0848 0.1002 0.1468 0.2223 0.3183 0.4227

1.0 0.0500 0.0582 0.0883 0.1371 0.2014 0.2744
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