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Abstract

When the measurement errors may be assumed to be normal and
independent from what is measured a subnormal model may be used.
We define a linear and generalized linear hypotheses for these models,
and derive F -tests for them. These tests are shown to be UMP for
linear hypotheses as well as strictly unbiased and strongly consistent
for these hypotheses. It is also shown that the F -tests are invariant
for regular transformations, possess structural stability and are almost
strongly consistent for generalized linear hypothesis. An application
to a mixed model studied by Michalskyi and Zmyślony is shown.
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1. Introduction

In many instances, measurement errors may be assumed to be normal and
independent from what is measured. We are thus led to use, in these in-
stances, subnormal models in which the observations vector Y n is assumed
to be the sum of two independent components: Zn and en, symbolically
denoted by Zn (i) en. While en is a normally distributed error vector no re-
striction is imposed on the distribution of Zn thus reducing the risk of third
type error. These errors occur when a wrong model is chosen. After consid-
ering subnormal models we define linear and generalized linear hypotheses.
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Next, we derive F -tests for these hypothesis and study their properties. The
well known results on normal vectors we use may be found in Seber (1980).
Our results lead to robust F -tests that maintain the good behaviour of these
tests in fixed effects models. The search for robust F -tests has also been
carried out by other authors, for instance see Agard and Birch (1992), Sil-
vapulle (1992) and Rao (1993), Sutradhar and & Yue (1993). Besides this
we tried to enlarge the class of models for which F -tests can be carried out
trying to achieve this through a unified approach. Recent works by Michal-
sky and Zmyślony (1996) and (1999) lead to such a unified treatment under
normality assumptions, which we now substitute by sub-normality.

2. Models

In order to be able to derive F -tests we assume, besides Zn (i) en, that
ZnεΩm, with Ωm a dimension m subspace of Rn, and that en ∼ N

(
0n, σ2C

)
this is en normal with null mean vector and regular variance-covariance
matrix σ2C, known up to σ2. The nullity of this mean vector and C being
regular may be considered as arising from the removal of systematic bias
and linkage between errors. This is clear for the mean vector while, if C was
singular it would have one null eigenvalue associated with an eigenvector
αn, so that V ar

(
αte

)
= 0 and Pr

(
αte = 0

)
= 1. As to C being known,

we point out that, when the measurement methods are well established, the
corresponding error distributions are well known. We thus have

(1) Y n = Zn + en

with Zn (i) en, ZnεΩm and en ∼ N
(
0n, σ2C

)
. Let U (C) be the family

of matrices G such that GCGt = In. Since C is symmetric there is P
orthogonal such that PCP t is a diagonal matrix D (r1, · · · , rn) with the
eigenvalues r1, · · · , rn of C as principal elements. It may be shown, see
Mexia (1989), that rj > 0, j = 1, . . . , n, and that

(2) G◦ = D

(
r
− 1

2
1 , . . . , r

− 1
2

n

)
PεU(C);

U (C) being also the family of matrices P ′G◦ with P ′ orthogonal. Thus,
if G1, G2εU (C) , G2G

−1
1 will be orthogonal. Lastly, if GεU (C) , GL−1εU
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(
LCLt

)
. With GεU (C), taking Y ′n = GY n, Z ′n = GZn, e′n = Gen and

Ω′m = GΩm we will have

(3) Y ′n = Z ′n + e′n

where Z ′n (i) e′n, Z ′nεΩ′m and e′n ∼ N
(
G0n, G

(
σ2C

)
Gt

)
= N

(
0n, σ2In

)
.

This new model is subnormal homoscedastic. Given wp ⊂ Ωm we have
w′ p = Gwp ⊂ Ω′m and with w = w′⊥ ∩ Ω′, we put

(4) U =
1
σ2

∥∥Z ′nw

∥∥2

where Z ′nw is the orthogonal projection of Z ′n on w.

In what follows, we are going to derive F−tests for

(5) H0 (d) : Pr (U ≤ d) = 1.

Now H0 (0) holds if and only if Z ′nεw′ or equivalently, if Znεw.
Thus H0 (0) will be a linear hypothesis of the type considered in normal

fixed effects models, see Scheffé (1959), while H0 (d) will be a generalized
linear hypothesis.

3. Test derivation

Let the line vectors of A and M constitute an orthonormal basis for Ω′⊥n−m

and wm−p. Then, with B =
[

A
M

]
, the line vectors of B will constitute

an orthonormal basis for w′⊥n−p and the orthogonal projection matrices on
these subspaces will be Q

(
Ω′⊥

)
= AtA, Q (w) = M t M and Q

(
w′⊥

)
= BtB.

Since orthogonal projection matrices are symmetrical and idempotent, for
any vnεRn we will have

∥∥vn
Ω′⊥

∥∥2 =
∥∥Q

(
Ω′⊥

)
vn

∥∥2 = vtQ
(
Ω′⊥

)t
Q

(
Ω′⊥

)
v =

vtQ
(
Ω′⊥

)
v = vtAtAv = ‖Avn‖2 as well as ‖vn

w‖2 = ‖Mvn‖2 and
∥∥vn

w′⊥
∥∥2 =

‖B vn‖2.
We write ‖V s‖2 ∼ σ2χ2

s,δ, when ‖V s‖2 is the product by σ2 of a chi-
square with s degrees of freedom and noncentrality parameter δ, while
f(1−q,m−p,n−m,δ) will be the quantile, for probability 1−q, of F−distribution
F (z | m− p, n−m, δ) with m − p and n −m degrees of freedom and non-
centrality parameter δ. If δ = 0 we write simply χ2

s, f(1−q,m−p,n−m) and
F (z | m− p, n−m).
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Let us establish:

Proposition 1. We have ‖Y ′n
w ‖2 (i) ‖Y ′n

Ώ⊥‖2 ∼ σ2χ2
n−m. When Z ′n =

bnεΩ′, the conditional distribution of

= =
n−m

m− p

‖Y ′n
w ‖2

∥∥Y ′n
Ω′⊥

∥∥2

will be F (z | m− p, n−m,u) with u = 1
σ2 ‖bn

w‖2 and U = u. If F ◦ (u)
is the distribution of U , the unconditional distribution of = will be
F (z | m− p, n−m) =

∫ +∞
0 F (z | m− p, n−m, u) dF ◦ (u) the distribution

degenerating into F (z | m− p, n−m) whenever H0 (0) holds.

Proof. Since the line vectors of A constitute an orthonormal basis for
Ω′⊥ and Z ′nεΩ′, AY ′n = Ae′n. Besides this,

[(
Ae′n

)t (
Me′n

)t
]t

= Be′n ∼ N
(
B0n, B

(
σ2In

)
Bt

)
= N

(
0n, σ2In−p

)

so that Ae′n ∼ N
(
0n−m, σ2In−m

)
(i) Me′n ∼ N

(
0m−p, σ2Im−p

)
and that

∥∥Y ′n
Ω′⊥

∥∥2 =
∥∥AY ′n∥∥2 =

∥∥Ae′n
∥∥2 ∼ σ2χ2

n−m.

Thus e′nΩ′⊥ = AtAe′n (i) e′nw = M t Me′n and Y ′n
Ω′⊥ = e′nΩ′⊥ (i) Y ′n

w = Z ′nw +e′nw ,
since Z ′ (i) e′n. Going over to the second part of the thesis, since Z ′n (i) e′n,
whenever Z ′n = bnεΩ′, Y ′n ∼ N

(
bn, σ2In

)
(i) and so,

MY ′n ∼ N
(
Mbn,M

(
σ2In

)
M t

)
= N

(
Mbn, σ2Im−p

)

so that

∥∥Y ′n
w

∥∥2 =
∥∥MY ′n∥∥2 ∼ χ2

m−p,u with u =
1
σ2
‖Mbn‖2 =

1
σ2
‖bn

w‖2

and U = u Since both chi-squares are independent, = has conditional dis-
tribution F (z | m− p, n−m,u). Thus, deconditioning in order to U , we get
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F (z | m− p, n−m,F ◦) =
∫ +∞

0
F (z | m− p, n−m,u) dF ◦ (u)

and, when H0 (0) holds, this distribution reduces to F (z | m− p, n−m),
since Pr (U = 0) = 1.

Corollary 2. When H0 (d) holds

F (z | m− p, n−m, d) ≤ F (z | m− p, n−m,F ◦) .

Proof. Since, see Mexia (1989), F (z | m− p, n−m,u) decreases with u
the thesis follows from the expression of F (z | m− p, n−m,F ◦).

When we use the statistic = and the critical region ]c, +∞) we have test
(=, c). Since, when Pr (U = d) = 1, H0 (d) holds, the significance level for
this hypothesis will be 1 − F (c | m− p, n−m, d). Thus if we want a q-
significance level test we must take c = f(1−q,m−p,n−m,d). An interesting
point is that (=, c) may be used in testing H0 (d) for any d, its power de-
pending only on c and F ◦. According to proposition 1 we have

(6) βc (F ◦) = 1− F (c | m− p, n−m,F ◦) =
∫ +∞

0
βc (u) dF ◦ (u)

with βc (u) = 1− F (c | m− p, n−m,u). Since

∥∥Y ′n
w

∥∥2 =
∥∥Y ′n

w′⊥
∥∥2 − ∥∥Y ′n

Ω′⊥
∥∥2

, with Sw′ =
∥∥Y ′n

w′⊥
∥∥2 and SΩ′ =

∥∥Y ′n
Ω′⊥

∥∥2
,

we get

(7) = =
n−m

m− p

∥∥∥Y ′n
w′⊥

∥∥∥
2
− ∥∥Y ′n

Ω′⊥
∥∥2

∥∥Y ′n
Ω′⊥

∥∥2 =
n−m

m− p

Sw′ − SΩ′

SΩ′

and so we obtained, see Scheffé (1959), the canonical form of the F test
statistic for fixed effect models. Thus, when it may be assumed that C = In,
the usual algorithms for computing the test statistic may be used.
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We now establish:

Proposition 3. = and U do not depend on which matrix GεU (C) is
used and are unchanged by regular linear transformations.

Proof. If G1, G2εU (C) we saw that P = G2G
−1
1 is orthogonal.

Taking Y ′n
i = GiY

n, Z ′ni = GiZ
n, Ω′ni = GiΩm and w′pi = Giw

p, i = 1, 2,
we get Y

′n
2 = PY

′n
1 , Z ′n2 = PZ ′n1 Ω′n2 = PΩ′m1 and w′p2 = Pw′p1 as well as, see

Mexia (1989),

∥∥∥
(
Y ′n

2

)
Ω′⊥2

∥∥∥
2

=
∥∥∥
(
Y ′n

1

)
Ω′⊥1

∥∥∥
2

and
∥∥∥
(
Y ′n

2

)
w′⊥2

∥∥∥
2

=
∥∥∥
(
Y ′n

1

)
w′⊥1

∥∥∥
2
.

Thus, with wi = w′⊥i ∩ Ω′i, i = 1, 2,, we get

∥∥(Y ′n
2 )w2

∥∥2 =
∥∥(Y ′n

1 )w1

∥∥2
,
∥∥∥(Y ′n

2 )Ω′⊥2

∥∥∥
2

=
∥∥∥(Y ′n

1 )Ω′⊥1

∥∥∥
2

and
∥∥∥
(
Z ′n2

)
w2

∥∥∥
2

=
∥∥∥
(
Z ′n1

)
w1

∥∥∥
2

and the first part of the thesis is established. Let L be the matrix of a regu-
lar linear transformation. Taking Y +n = LY n, Z+n = LZn and e+n = Len,
we get Y +n = Z+n + e+n, with Z+n (i) e+n ∼ N

(
L0n, L

(
σ2C

)
Lt

)
=

N
(
0n, σ2LCLt

)
. Now, if G+εU

(
LCLt

)
and, GεU (C), we will have

GL−1G+εU
(
LCLt

)
and, according to the first part of the thesis, = and

U are the same whichever of these two matrices is used. We now have only
to point out that using GL−1 we get Y ′+n = GL−1Y ′+n = Y ′n as well as
Z ′+n = GL−1Z ′+n = Z ′n.

This proposition shows tests (=, c) to be invariant for regular linear
transformations, thus for a wider class of linear transformations than is usu-
ally considered for F -tests, for instance see Lehmann (1959). The reason for
these enhanced invariance properties is that, instead of the usual assumption
of homocedasticity, the variance-covariance matrix of en was only required
to be regular.

4. Test power

Let V [V ]́ be the family of tests for H0 (d) whose conditional power, given
Z ′n = bnεΩ′, is a [an increasing] function of u = 1

σ2 ‖bn
w‖2. The class V
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is similar to the class V0 of tests in fixed effects models whose power is a
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function of a noncentrality parameter δ. We point out that = tests are UMP
in class V0. We now extend this property to subnormal models deriving the:

Proposition 4. The (=, c) tests for H0 (0) are strictly unbiased and UMP
in class V .

Proof. Since, see Mexia (1989), βc (u) increases with u, the first part of
the thesis follows from H0 (0) holding when Pr (U = 0) = 1. Let now β (u)
be the conditional power for a test in V . If β (0) = q this test will have
significance level q for H0 (0) the same as

(=, c0
)

with c0 = f(1−q,m−p,n−m).
Moreover, if β (u) ≤ βc0 (u) did not hold for u = δ we could use the statistic
and critical region of this test for, in fixed effects models, obtaining a test
with higher power for δ than the F -test of the same significance level which,
as we know, is impossible. To complete the proof we have only to point out
that β (F0) =

∫ +∞
0 β (u) dF 0 (u) ≤ ∫ +∞

0 βc0 (u) dF 0 (u) = βc0
(
F 0

)
.

Proposition 5. If a test in V ,́ with conditional power β (u), has the same
significance level for H0 (d) and (=, c), we have β (0) ≥ βc (u).

Proof. Since β (u) and βc (u) increase with u and H0 (d) holds when
Pr (U = d) = 1 we will have β (d) = βc (d) since this is the significance
level for both tests. Now, if β (0) < βc (0), there would be c′ > c such that
β (0) = βc′ (0) and so β (d) ≤ βc′ (d) < βc (d) which is impossible. The thesis
follows from this impossibility.

5. Other properties

Given the observations vector Y n, statistics = and U depend on C, Ω and
ω. The limits, in this section, are taken for N −→ ∞. To show that this
dependency is continuous we write WN −→ W, with WN = [wN,i,j ] and
W = [wi,j ] both n × n matrices, whenever wN,i,j −→ wi,ji = 1, · · · , n, j =
1, · · · , n. Likewise we will have ∇N −→ ∇, with ∇N and ∇ subspaces, if
Q (∇N ) −→ Q (∇).

When CN −→ C, there exists, see Vaquinhas and Mexia (1995),
GN εU (CN ) and GεU (C) such that GN −→ G, thus

Y ′n
N = GNY n −→ Y ′n = GY n
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and Z ′nN = GNZn −→ Z ′n = GZn. And, if Ωm
N −→ Ωm and ωp

N −→ ωp, we
will also have

Ω′mN = GΩm
N −→ Ω′m = GΩm

and

ω′pN = GNωp
N −→ ω′p = Gωp

as well as Ω′⊥N −→ Ω′⊥ and

ωN =
(
ω′⊥N

⋂
Ω′N

)
−→ ω =

(
ω′⊥

⋂
Ω′

)
.

Now, when vn
N −→ vn and ∇N −→ ∇, we have

‖(vn
N )∇N‖2 −→ ‖(vn)∇‖2 .

We have thus established:

Proposition 6. If CN −→ C, Ωm
N −→ Ωm and ωp

N −→ ωp, then

=N =
n−m

m− p

∥∥∥(Y ′n
N )wN

∥∥∥
∥∥∥
(
Y ′n

N

)
Ω′⊥N

∥∥∥
2 −→ = =

n−m

m− p

‖(Y ′n
w )‖2

∥∥(
Y ′n

Ω′⊥
)∥∥2 ,

U =
1
σ2

∥∥∥
(
Z ′nN

)
ωN

∥∥∥
2
−→ U =

1
σ2

∥∥Z ′nω
∥∥2

.

From this proposition we conclude that (=, c) tests have structural stability.
The main relevance of this result rests in C being, in most cases, only ap-
proximately known. Structural stability ensures robustness of (=, c) tests.
We now consider what happens when information increases. We start by
establishing the:
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Lemma 7. If the iid vectors X2
j =

[
X1,j

X2,j

]
, j = 1, · · · , have mean vector

µ2 =
[
µ1

µ2

]
and variance-covariance matrix K =

[
σ2

1

σ2,1

σ2,1

σ2
2

]
, the distribu-

tion of

ZN =
√

N




g

h

N−1
N∑

j=1
X1,j

N−1
N∑

j=1
X2,j

− g

h

µ1

µ2




converges uniformly towards N
(
0, σ2

)
with

σ2 =
g2

h2

(
σ2

1

µ2
1

− 2µ2

µ1µ2
1

σ1,2 +
µ2

2

µ2
1

σ2
2

)
,

whenever µ2 6= 0, and then, with 0 < r < 1
2 ,

Pr




∣∣∣∣∣∣∣∣∣

g

h

∑N
j=1 X1,j

N∑
j=1

X2,j

− g

h

µ1

µ2

∣∣∣∣∣∣∣∣∣
<

1
N r


 −→ 1.

Proof. According to the central limit theorem, the limit
distribution of

√
N( 1

N

∑N
j=1 X2

j − µ2) is N
(
02, K

)
so that, see Rao (1952),

the limit distribution of

ZN =
√

N




g

h

∑N
j=1 X1,j

N∑
j=1

X2,j

− g

h

µ1

µ2


 will be N

(
0, σ2

)
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whenever µ2 6= 0. Since N
(
0, σ2

)
is continuous the distribution of ZN will,

due to Polya’s theorem, see Fisz (1963), converge uniformly to N
(
0, σ2

)
and

so

Pr


|

g

h

∑N
j=1 X1,j

N∑
j=1

X2,j

− g

h

µ1

µ2
|< 1

N r


 = Pr

(
N

1
2
−r < ZN < N

1
2
−r

)
−→ 1

and the proof is complete.

We now establish:

Proposition 8. If the Y ′n
1 are iid and the variance σ2 of the X1,j =

1
σ2

∥∥∥(Y ′n
j )w

∥∥∥
2

is defined, with

=N =
n−m

m− p

N∑
j=1

‖(Y ′n)w‖2

N∑
j=1

‖(Y ′n)Ω′⊥‖2

and cN =
m− p + d

n−m
+

1
N r

we have a succession {(=N , cN )} of tests for H0(d) whose probabilities of
errors of first type and second type, for alternatives such that the mean
value of the variable X1,j exceeds m− p + d, tend to zero.

Proof. Taking X2,j = 1
σ2 ‖(Y ′n)Ω′⊥‖2 we have X1,j(i)X2,j ∼ σ2χ2

n−m j =
1, · · · , so that the conditions of Lemma 7 hold if and only if σ2 is defined
in which case we have σ1,2 = σ2,1 = 0, σ2

2 = 2(n − m) and µ2 = n − m.
Moreover, when U = u, X1,j ∼ χ2

m−p,u with mean value m − p + u so that,
when H0(d) holds, µ1 < m− p + d. The rest of the proof is straightforward
since

N∑
j=1

∥∥∥(Y ′n
j )w

∥∥∥
2

N∑
j=1

∥∥∥(Y ′n
j )Ω′⊥

∥∥∥
2

=

N∑
j=1

X1,j

N∑
j=1

X2,j
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When we are testing H0(0) and σ2
1 is defined we have, for all alternatives,

µ1 > m− p and, with cN = m−p
n−m + 1

Nr , the probabilities of first and second
type errors for the tests {(=N , cN )} will tend to zero. Following Tiago
de Oliveira (1980) and (1982) we conclude that the F - tests are strongly
consistent for H0(0) and almost strongly consistent for H0(d).

6. Mixed models

We will write the sum of subspaces as
⋃r

i=14i and R(B) will be the range
space of matrix B. In mixed models Zn will have mean vector µn = Xβk

and V ar(Zn) =
∑a

i=1 θiVi, and en ∼ N(0n, σ2In). Thus, with ∇◦ =R(X)
and ∇i =R(Vi), i = 1, · · · , a, we have µnε∇◦ and R(V ar(Zn)) =

∑a
i=1 ∇i,

so that

(8) ZnεΩm =
a⋃

i=0
∇i

Given a proper subspace 4 of ∇◦ such that ω◦ = 4⊥ ∩∇◦ is orthogonal to
R(V ar(Zn)) we will have Y n

ω◦ = µn
ω◦ + en

ω◦ and H◦,◦,µnε4 can be rewritten
as a hypothesis on an estimable vector.

To test H◦,◦, against H◦,1 : µn /∈ 4 we can use the test statistic

(9) =◦ =
n−m

m− p◦

∥∥Y n
ω◦

∥∥2

∥∥Y n
Ω⊥

∥∥2

where m − p◦ = dim(ω◦). Statistic =◦ will have distribution F (z | m − p◦,
n − m, δ), with δ = 1

σ2

∥∥µn
ω◦

∥∥2. Since =◦ depends on Zn through µn this
test will behave as in a fixed effects model, being UMP in the family of tests
whose power is a function of δ. Besides this, we can rewrite the hypothesis
as H◦,◦, : θ◦ = 0 and H◦,1, : θ◦ > 0, with θ◦ = ‖µn

ω‖2 , and

θ̃◦ = ‖Y n
ω ‖2 − m− p◦

n−m

∥∥Y n
Ω⊥

∥∥2 = Y nt

[
Q(ω)− m− p◦

n−m
Q(Ω⊥)

]
Y n
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will be a quadratic unbiased estimator. The matrices for the positive and
negative parts of this estimator will be K+◦ = Q(w◦) and K−◦ = m−p◦

n−m Q(Ω⊥),
so that

(10) =◦ =
Y ntK+◦ Y n

Y ntK−◦ Y n
·

Going over to the hypothesis on variance components let the

(11) ωj =
(
∪

i 6=j
5i

)⊥
∩ Ω; j = 1, · · · , a

have dimension m − pj,j = 1, · · · , a. When m − pj > 0, Zn
ωj

will have a
null mean vector and V ar(Zn

ωj
) = θjWj with Wj = Q(ωj)VjQ(ωj)t. Thus

Uj = 1
σ2 ‖Zn

ωj
‖2 is not identically null if and only if θj > 0 and we can use

(12) =j =
n−m

m− pj

∥∥∥Y
n

ωj

∥∥∥
2

∥∥Y n
Ω⊥

∥∥2

to test Hj,◦, : θj = 0 against Hj,1, : θj > 0. Besides this, with Q(ωj) =
M t

j Mj , and cj = Trace(Wj),
∥∥Y

n

ω

∥∥2 =
∥∥MjY

n∥∥2 will have mean value
θjcj + (m− pj)σ2. Thus we have the quadratic unbiased estimator

(13) θ̂j = Y nt

(
1
cj

Q (ωj)− m− pj

cj (n−m)
Q

(
Ω⊥

))
Y n

and, with K+
j =

1
cj

Q (ωj) and K−
j =

m− pj

cj (n−m)
Q

(
Ω⊥

)
, we get

(14) =j =
Y ntK+

j Y n

Y ntK−
j Y n

·
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As final remarks we point out that the results on the test power given above
hold for the tests presented in this section, and that the use of the positive
and negative parts of quadratic estimators in deriving the test statistics was
introduced by Michalski and Zmyślony (1996) and (1999).
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