Czasopismo
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
If a nonlinear regression model is linearized in a non-sufficient small neighbourhood of the actual parameter, then all statistical inferences may be deteriorated. Some criteria how to recognize this are already developed. The aim of the paper is to demonstrate the behaviour of the program for utilization of these criteria.
Słowa kluczowe
Kategorie tematyczne
Rocznik
Tom
Numer
Strony
21-48
Opis fizyczny
Daty
wydano
2001
otrzymano
2000-09-13
Twórcy
autor
- Department of Algebra and Geometry, Faculty of Science, Palacký University, Tomkova 40, CZ-779 00 Olomouc
autor
- Department of Mathematical Analysis and Applied Mathematics, Faculty of Science, Palacký University, Tomkova 40, CZ-779 00 Olomouc
Bibliografia
- [1] D.M. Bates and D.G. Watts, Relative curvature measure of nonlinearity (with discussion), Journal of the Royal Statistical Society, Ser. B. 42 (1), 1980, 1-25.
- [2] D.M. Bates and D.G. Watts, Nonlinear Regression Analysis and Its Applications, J. Wiley, N. York, Chichester, Brisbane, Toronto, Singapure 1988.
- [3] A. Jencová, A comparison of linearization and quadratization domains, Applications of Mathematics 42 (1997), 279-291.
- [4] L. Kubáček, On a linearization of regression models, Applications of Mathematics 40 (1995), 61-78.
- [5] L. Kubáček, Models with a low nonlinearity, Tatra Mountains Math. Publ. 7 (1996), 149-155.
- [6] L. Kubáček, Quadratic regression models Math. Slovaca 46 (1996), 111-126.
- [7] L. Kubáček and L. Kubácková, Regression Models with a weak Nonlinearity, Technical Reports, Department of Geodesy, University of Stuttgart (1998), 1-67.
- [8] A. Pázman, Nonlinear Statistical Models, Kluwer Academic Publishers, Dordrecht-Boston-London 1993.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmps_1018