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Abstract

The purpose of this work is a study of the following insurance
reserve model:

R(t) = η +
∫ t

0

p(s, R(s))ds +
∫ t

0

σ(s,R(s))dWs − Z(t), t ∈ [0, T ],

P (η ≥ c) ≥ 1− ε, ε ≥ 0.

Under viability-type assumptions on a pair (p, σ) the estimation γ with
the property: inf0≤t≤T P{R(t) ≥ c} ≥ γ is considered.
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1. Introduction

The classical collective risk theory was initiated by Lundberg (1903). In
classical theory the insurer‘s reserve is described by the process:

Rt = u + ct−
C(t)∑

i=1

Zi, t ≥ 0.

In this model, u describes the initial risk reserve at time t = 0 and c is the
constant rate of premium income. The number of claims are generated by
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a Poisson process {C(t), t ≥ 0}, where the claims Z1, Z2, ... form a sequence
of independent and identicaly distributed random variables ( i.i.d. r.v.’s),
with a probability distribution function (p.d.f.) G. The above model is not
realistic because the cumulative premium income is a linear function of time.
On the other hand, the income of an insurer is not deterministic. In reality,
there are fluctuations in the number of customers and the claim arrival
intensity may depend on time. Moreover, the insurer may invest the surplus.
Finally, the classical model is not so realistic since there is no dependence
between the income to the company and the level of risk reserve. To model
these additional uncertainties Dufresne and Gerber (1991) considered the
perturbated compound Poisson risk model, where the perturbation process
(added to the original risk reserve) was a Brownian motion. In Petersen
(1990) a model can be found, where the premium part depends on current
reserve. It has the following form:

Rt = u +
∫ t

0
p(Rs)ds−

C(t)∑

i=1

Zi, t ≥ 0.

In the paper, we propose the model assuming that initial reserve u is a given
random variable η with the restriction on its distribution: P{η ≥ c} ≥ 1−ε,
for given constants c ≥ 0 and ε ∈ [0, 1). Moreover, in our model we allow
the second integral term in premium part of the reserve. The aim of the
paper is the lower estimation of the probability that reserve Rt will be over
a constant level c, for all times t taken from a finite interval [0, T ]. In our
study, we employ so-called weak tangential condition known from the study
of viability problems.

2. Model and notations

Let (Ω, z, (zt), P ) be a given filtered probability base and let T1, T2, ...
be a sequence of positive i.i.d. random variables on it. We introduce also
the sequence of (nonnegative) claim amounts: Z1, Z2, ... . Next define the
counting process C(t) = max{n ≥ 1 :

∑n
i=1 Ti ≤ t}, t > 0, with C(0) = 0

and the total claim amount Z(t) = ΣC(t)
i=1 Zi, t > 0 and Z(0) = 0. Assume,

that Z1, Z2, ... are i.i.d. discrete valued r.v.‘s, with p.d.f. G, independent
of the process C. For any r.v. Y , by P Y we denote the distribution of Y
under P , on the measurable space (R, β(R)). For fixed c ≥ 0,we consider
the following (one dimensional) stochastic equation:
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R(t) = η+
∫ t

0
p(s,R(s))ds+

∫ t

0
σ(s, R(s))dWs − Z(t), t ∈ [0, T ]

P η{[c,∞)} ≥ 1− ε.
(1)

For a given ε ∈ [0, 1), the initial reserve η is assumed to be z0 measurable
r.v. with restriction on its distribution as above (we do not require η to be a
nonnegative r.v.). Integral terms above describe ”drift” and ”perturbation”
parts of the premium income process depending on the reserve R. We assume
that W is the Wiener process, adapted to the given, rigth continuous and
complete filtration (zt). Let D = σ(Z(T )) be a σ-field generated by r.v.
Z(T ). Then we can expand the original filtration (zt) introducing the new
one (say) (Γt) by: Γt = ∩s>tσ(zs, D), t ∈ [0, T ]. We impose the following
assumption on the model.

A1. Functions p, σ : R+ × R → R are assumed to be jointly continuous,
such that:

|p(t, x)− p(t, y)|+ |σ(t, x)− σ(t, y)| ≤ k|x− y|,

for some k > 0, all x, y and t ∈ [0, T ].
The aim of the paper can be described in the following way: the problem

is to find a solution to (1), and constant γ ∈ [0, 1) with the property:

inf
t∈[0,T ]

PR(t){[c,∞)} ≥ γ.

In the next section, we shall transform the above formulated problem to
the one being a case of one-dimenssional weak viability problem connected
with an extended filtration and equivalent probability. We recall now main
notions needed in the sequel. Let {Kt, t ∈ [0, T ]} be a family of closed subsets
of real line. Consider a stochastic equation on some filtered probability space
(Ω∗, z∗, (z∗t ), P ∗):

X(t) = S +
∫ t

0
p(s, X(s))ds +

∫ t

0
σ(s,X(s))dWs, t ∈ [0, T ],

P ∗S{Ko} ≥ γ, with γ ∈ (0, 1].
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Recall that under Lipschitz type assumption above, imposed on the
mappings p, σ, there exists a unique (strong) solution X to this equation.

Definition 2.1. By (γ, {Kt}, (Ω∗,z∗, (z∗t ), P ∗))-viable solution to the equa-
tion above we mean any solution X with the property: P ∗X(t){Kt} ≥ γ, for
every t ∈ [0, T ].

For the Ito stochastic equation or inclusion the viability problem, with
γ = 1 was studied in Aubin and Da Prato (1990, 1998), Kisielewicz (1995),
Gauthier and Thibault (1993) and others. The case when Kt ≡ K, with K
being a fixed nonempty, closed set and γ ∈ (0, 1) (weak viability or viability
under distribution constraints) was considered in Michta (1998) and in
Mazliak (1999), where a controlled diffusion case was studied. For our
purposes we present now sufficient conditions to ensure (γ,K)-viable
solution. For the set K, by Πγ(K) we denote the set of probability
distributions µ, on a real line, such that µ(K) ≥ γ. It is an easy
observation that for every nonempty and closed set K, the set Πγ(K) is
nonempty, convex and closed under weak convergence. Consequently, for
r.v. ξ we set: ξ ∈P ∗ Πγ(K) to denote that P ∗ξ ∈ Πγ(K).

Definition 2.2. ((γ,K, (Ω∗,z∗, (z∗t ), P ∗))-weak tangential condition
(WTC)). Functions p and σ satisfy (γ, K, (Ω∗,z∗, (z∗t ), P ∗))-WTC with re-
spect to X, if for each t ∈ [0, T ), and every F ∗

t -measurable r.v. ξ, such that
ξ ∈P ∗ Πγ(K), there exist ε′ > 0, t′ ∈ (t, t + ε′) and a sequence of continuous
processes {Un, V n, n ≥ 1} on [t, t′], for which:

(WTC1) ξ +
∫ z

t
Un

s ds +
∫ z

t
V n

s dWs ∈P ∗ Πγ(K), for t ≤ z ≤ t′,

(WTC2) (Un, V n) →P ∗ (p(X), σ(X)),

where the symbol →P ∗means the convergence in probability (under P ∗) in
C([t, t′], R2).

Remark 2.1. The conditions given in the Definition 2.2 are similar to
Gauthier and Thibault‘s tangential condition in the case of the viability
when γ = 1.
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3. Associated stochastic equation and equivalent probability
under change of filtration

Consider the following (say) associated equation:

X(t) = η +
∫ t

0
p(s,X(s))ds+

∫ t

0
σ(s,X(s))dWs − Z(T ), t ∈ [0, T ],

P η{[c,∞)} ≥ 1− ε.

(2)

Let us notice that the ”new” initial random variable in (2), say S = η−Z(T ),
is an anticipating one with respect to the filtration (zt). To make it nonan-
ticipating we use an expanded filtration (Γt) introduced before. Simulta-
neously with the above equation, we consider another one, with respect to
(Γt). Namely:

X(t) = S +
∫ t

0
p(s,X(s))ds +

∫ t

0
σ(s,X(s))dWs, t ∈ [0, T ],

PS{[c,∞)} ≥ γ.

(3)

Here the constant γ (it will be shown later) depends on ε,G,and laws of r.v.
η and C(T ), and has to be calculated under the assumption: P η{[c,∞)} ≥
1 − ε. The next important consequence of expanding the original filtration
is that the process W need not be a Wiener process with respect to the
filtration (Γt). Generaly to preserve the property of being a local martingale
(with respect to expanded filtration) even as a semimartingale it is generaly
also a delicate problem (see e.g. Yor, 1985). But in our lattice-type situation
we have:

Lemma 3.1. Let us suppose that the claim size r.v.‘s Z1, Z2, ... are
discrete valued. Then the process W is a semimartingale with respect to
the filtration (Γt).

Proof. Let B be a countable set such that P{Zn ∈ B} = 1, for n ≥ 1.
Next, we define the events: A(n,b1,b2,...,bn) = {C(T ) = n,Z1 = b1, Z2 =
b2, ..., Zn = bn}, n ≥ 1, bi ∈ B, for 1 ≤ i ≤ n. Additionaly, for n = 0 we set
A(0) = {C(T ) = 0}. Let Λ denote the family of all events defined as above.
It is easily seen that Λ consists of countable many disjoint events. Thus el-
ements of Λ can be indexed by nonnegative integers, i.e. Λ = {An : n ≥ 0}.



254 M. Michta

Moreover, the probability of each such event is positive and D = σ(Z(T )) =
σ(Λ). The next observation is that Λ forms a countable partition of Ω.
By Pn(·) = P (·|An), n ≥ 0, we define a sequence of probability measures.
Then Pn ¿ P , for each n ≥ 0. From Protter (1990, Theorem 2, Chapter
2) W is a ((zt), Pn)-semimartingale for every n ≥ 1. Next, expanding the
original filtration (zt) by all events with Pn-probability 0 or 1 we get a
larger one, say (zn

t ), such that W is a ((zn
t ), Pn)-semimartingale, for n ≥ 1.

Then we have zt ⊂ Γt ⊂ zn
t , for t ≥ 0, and n ≥ 0. Since the process W is

zt-adapted, then it is Γt-adapted as well. Thus by Stricker‘s Theorem (see
e.g. Protter, 1990) we get that W is also a (Γt, Pn)-semimartingale. Since
P (·) =

∑
n≥0 Pn(·)P (An), then we claim that W is a (Γt, P )-semimartingale

as well, what completes the proof.
Owing to Lemma 3.1 we assume:

A2. There exists a Γ-predictable process L such that Nt = Wt −
∫ t
0 Lsds is

a (Γ, P )-continuous local martingale.

A3. E{exp(1
2

∫ T
0 L2

sds)} < ∞ (Novikov‘s condition).

Remark 3.2. The lemma above in some sense justifies the assumption
A2. Since the process W is a (Γt, P )-semimartingale with continuous paths,
then it can be expressed as a sum of (Γt, P )-local martingale and a process
of finite variation. In fact, the assumption A2 expresses the shape of W.

Recall (see e.g. Protter, 1990) that for the process Y being a continuous
semimartingale, by 〈Y, Y 〉 we denote the quadratic variation process of Y,
defined by:

〈Y, Y 〉t = lim
n→∞

∑

tnj ∈πn

(Ytnj+1
− Ytnj

)2,

where πn : 0 = tn0 ≤ tn1 ≤ ... ≤ tnkn
= t denotes the finite partition

of the interval [0, t] such that limn→∞max0≤j≤kn−1(tnj+1 − tnj ) = 0,
and the convergence is meant in probability. Similarly, for continuous
semimartingales X,Y, their quadratic covariation process 〈X, Y 〉t is
defined by:

〈X,Y 〉t = lim
n→∞

∑

tnj ∈πn

(Xtnj+1
−Xtnj

)(Ytnj+1
− Ytnj

).

Let us define a (Γt, P )-continuous local martingale Y = − ∫
LsdNs, where

processes L and N have been defined in A.2. Since 〈Y, Y 〉t =
∫ t
0 L2

sd〈N, N〉s
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and since 〈N, N〉 computed under (Γt, P ) is equal to 〈W,W 〉 computed
under (zt, P ) (in fact, quadratic variation does not depend on the
filtration), then 〈Y, Y 〉t =

∫ t
0 L2

sds. Hence (A3) E{exp(1
2〈Y, Y 〉T )} < ∞.

Thus by Novikov‘s Theorem the exponential process Dt = exp(Yt− 1
2〈Y, Y 〉t)

is a (Γt, P )-martingale. By Doleans Theorem it is a solution to the equation
Dt = 1+

∫ t
0 DsdYs. Hence, it follows, in particular that EP DT = 1. We

define a new probability Q, dQ = DT dP. Then Q ∼ P . It can be proved
(see Protter, 1989) that W is a (Γt, Q)-local martingale. Thus the equation
(3) can be considered on the enlarged probability space (Ω,z, (Γt), Q):

X(t) = S +
∫ t

0
p(s,X(s))ds +

∫ t

0
σ(s,X(s))dWs, t ∈ [0, T ],

QS{[c,∞)} ≥ γ.

(4)

To obtain the constant γ in the initial distribution constraints of eq. (3)
or (4), let pn = P{C(T ) = n} > 0, for n = 0, 1, ... . Recall that for a given
ε ∈ [0, 1) equation (2) is considered under constraint P η{[c,∞)} ≥ 1 − ε.
Then we can formulate:

Lemma 3.2.

a) P η,Z(T ) = Qη,Z(T ). Consequently: P η = Qη, PS = QS .

b) P η{[c,∞)} ≥ 1 − ε ⇐⇒ PS{[c,∞)}(= QS{[c,∞)}) ≥ γ,
where γ = p0(1− ε) +

∑∞
n=1 pnE[G∗n(η − c)].

Proof. a) Since η, (T1,T2, ..., Z1,Z2, ...) and the process (Wt) are indepen-
dent under P , then particularly η, Z(T ) and DT are P -independent r.v.‘s.
Hence, for every Borel subsets A, B ∈ β(R) we get: Qη,Z(T )(A × B) =
EP (DT I(η∈A)I(Z(T )∈B)) = EP (DT )EP (I(η∈A)I(Z(T )∈B)) = P η,Z(T )(A×B).

For part b) it is easily seen that:

P (S ≥ c) = p0P (η ≥ c) +
∞∑

n=1

pnE[G∗n(η − c)].

Thus taking: γ = p0(1− ε)+
∑∞

n=1 pnE[G∗n(η− c)] we get: PS{[c,∞)} ≥ γ,
where G∗n denotes the n-th convolution of the common p.d.f. G of the i.i.d.
r.v.‘s Z1, Z2, ... . The converse part is obvious.

Following above remarks we can formulate:
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Theorem 3.1. Let 0 < ε < 1 be given and let assumtions A1, A2 and A3
hold. The following are equivalent:

a) X is a solution to equation (2) (under P ), with initial constraint
P η{[c,∞)} ≥ 1− ε

b) X is a solution to equation (3) (under P ) with initial constraint
PS{[c,∞)} ≥ γ

c) X is a solution to equation (4) (under Q) with initial constraint
QS{[c,∞)} ≥ γ.

Moreover, PX = QX on C([0, T ]).

Proof. Let X be a (zt, P )-solution to equation (2). Then by calculations
above we have that P η{[c,∞)} ≥ 1 − ε if and only if PS{[c,∞)} ≥ γ, and
by A2 the process X is also a (Γt, P )-solution to the equation:

X(t) = S +
∫ t
0 p(s,X(s))ds +

∫ t
0 σ(s,X(s))dNs +

∫ t
0 Lsσ(s,X(s))d〈N, N〉s,

PS{[c,∞)} ≥ γ,

(5)
with (Γt, P )-local martingale N. Since dQ = DT dP (and Q ∼ P ),
then by Girsanov‘s Theorem (see e.g. Protter, 1990) the process N is a
(Γt, Q)-semimartingale of the form:

Nt = [Nt −
∫ t

0

1
Ds

d〈D, N〉s] +
∫ t

0

1
Ds

d〈D, N〉s,

with its ”(Γt, Q)-local martingale” part given in the bracket. Moreover, since
Dt = 1+

∫ t
0 DsdYs, and Yt = − ∫ t

0 LsdNs, then

∫ t

0

1
Ds

d〈D, N〉s =
∫ t

0

Ds

Ds
d〈Y,N〉s = −

∫ t

0
Lsd〈N, N〉s = −

∫ t

0
Lsds.

Hence we have that equation (5) has the form:

X(t) = S +
∫ t

0
p(s,X(s))ds +

∫ t

0
σ(s,X(s))dWs, t ∈ [0, T ],

with (Γt, Q)-local martinagale W. By Lemma 3.2 we have also that
QS{[c,∞)} ≥ γ.
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To present the viability result to reserve process R we need the
following lemma:

Lemma 3.3. Let X and R denote the solutions to equations (4) and (1)
respectively. Then R(t) ≥ X(t), for t ∈ [0, T ].

Proof. It follows immediately from the fact Z(T ) ≥ Z(t), thus η−Z(T ) ≤
η − Z(t), for t ∈ [0, T ], and the Proposition 2.18 p. 239 in Karatzas and
Shreve (1988).

Theorem 3.2. Let us assume that conditions A1, A2 and A3 hold,
and let X be a solution to equation (3). If functions p and σ satisfy
(γ, [c,∞), (Ω,z, (Γt), P ))-WTC with respect to X, then the solution R to
equation (1) has the following property: inft∈[0,T ]P

R(t){[c,∞)} ≥ γ.

Proof. By Theorem 3.1 and Lemma 3.3, it is enough to show that X is a
(γ, [c,∞), (Ω,z, (Γt), Q))-viable solution to eq. (4). Let us consider the set
A = { a ∈ [0, T ] : Xt ∈Q Πγ([c,∞)) for all t ∈ [0, a]}. The idea of the proof is
to show that A = [0, T ]. First, since X is a solution to equation (4), then we
claim 0 ∈ A. Next, we show that A is a closed subset of the interval [0, T ].
Indeed, if a ∈ clA, then we can take a sequence an ∈ A such that an → a,
if n →∞. Then Xt ∈Q Πγ([c,∞)) for t ≤ an, n ≥ 1. A continuity of sample
paths of the process X implies: Xan → Xa Q a.s. Since Q ∼ P we have this
convergence P a.s. as well. This implies that Xan →d Xa both under Q and
P . Thus, since {QXan} ⊂ Πγ([c,∞)), then by Theorem 2.1 in Billingsley
(1968) we get QXa ∈ Πγ([c,∞)). Hence a ∈ A. Finally, let θ = supA. To
finish the proof it is enough to show that θ = T. Suppose θ < T. Since
θ ∈ A, then Xθ ∈Q Πγ(Kc). By Theorem 3.1 we have Xθ ∈P Πγ(Kc). From
the (WTC)-assumption taken with t = θ, and ξ = Xθ, there exist ε′ > 0,
θ′ ∈ (θ, θ + ε′), and two sequences (Un), (V n) of continuous processes on
[θ, θ+ ε′] such that (WTC1) and (WTC2) hold. By (WTC2), and Kurtz
and Protter (1991, Theorem 2.2) we get:

∫ θ′

θ
Un

s ds +
∫ θ′

θ
V n

s dNs +
∫ θ′

θ
LsV

n
s ds →P

∫ θ′

θ
p(s,X(s))ds

+
∫ θ′

θ
σ(s,X(s))dNs +

∫ θ′

θ
Lsσ(s, X(s))ds,
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with (Γt, P )-local martingale N. Since Q ∼ P , then the same kind of
convergence holds under Q as well. But under P :

∫ θ′

θ
V n

s dNs +
∫ θ′

θ
LsV

n
s ds =

∫ θ′

θ
V n

s dWs,

with (Γt, P )-semimartingale W, and then:

ξ +
∫ θ′

θ
Un

s ds +
∫ θ′

θ
V n

s dWs →Q Xθ′ .

Using (WTC1), and once again the fact that the latter convergence implies
the convergence in distribution (both under P and Q), we conclude that
QXθ′ ∈ Πγ([c,∞)). Hence θ′ ∈ A, what contradicts the nature of θ.

Example. Let us assume that r.v. C(T ) has a geometric distribution:
pn = β(1− β)n, n = 0, 1, 2, ..., 0 < β < 1.

Assume also that P{η ≥ c} ≥ 1− ε, for some ε ∈ [0, 1). Then we have:

P{S ≥ c} = (1− β)P{η ≥ c}+ βE{G ∗ FZ(T )(η − c)}.(6)

Hence we can put: γ = (1− β)(1− ε) + βE{G ∗ FZ(T )(η − c)}.
Note that in ”the deterministic case”, when η is a deterministic constant,

η = x ≥ 0 and c = 0, equation (6) can be written as: FZ(T ) = (1 − β)δ0 +
βG∗FZ(T ) (so called defective renewal equation), where δ0 denotes the p.d.f.
concentrated at 0.

On the other hand, let x0 = sup{x : G(x) < 1}, and let mG

denote the moment generating function for p.d.f. G, i.e. mG(s) =∫∞
0 exp(sx)dG(x). Assume that there exists a solution α > 0 to

the equation mG(α) = 1
β . In Bergmann and Stoyan (1976) it was

shown (in particular) that 1 − FZ(T )(x) ≤ a exp(−αx), for x ≥ 0, where

a = supx∈[0,x0)

(1−G(x)) exp(αx)∫∞
x exp(αy)dG(y)

.

Having this, we get from equality (6):

P{S ≥ c} ≥ (1− β)P{η ≥ c}+ βE{G ∗ fα,a(η − c)},
where fα,a(x) = (1− a exp(−αx))I(x)[0,∞).

In this case: γ = (1− β)(1− ε) + βE{G ∗ fα,a(η − c)}.
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