ArticleOriginal scientific text

Title

On risk reserve under distribution constraints

Authors 1

Affiliations

  1. Institute of Mathematics, Technical University, Podgórna 50, 65-246 Zielona Góra, Poland

Abstract

The purpose of this work is a study of the following insurance reserve model: R(t)=η+0tp(s,R(s))ds+0tσ(s,R(s))dWs-Z(t), t ∈ [0,T], P(η ≥ c) ≥ 1-ϵ, ϵ ≥ 0. Under viability-type assumptions on a pair (p,σ) the estimation γ with the property: f0tTP{R(t)c}γ is considered.

Keywords

martingales, stochastic equations, reserve process, Girsanov`s theorem, viability

Bibliography

  1. J.P. Aubin and G. Da Prato, Stochastic viability and invariance, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 17 (1990), 595-613.
  2. J.P. Aubin and G. Da Prato, The viability theorem for stochastic differential inclusions, Stochastic Anal. Appl. 16 (1) (1998), 1-15.
  3. R. Bergmann and D. Stoyan, On exponential bounds for the waiting time distribution function in GI/G/1, Journal of Applied Probability 13 (1976), 411-417.
  4. P. Billingsley, Convergence of Probability Measures, J. Wiley and Sons, New York and London 1968.
  5. F. Dufresne and H.U. Gerber, Risk theory for the compound Poisson process that is perturbated by diffiusion, Insurance: Mathematics and Economics 10 (1991), 51-59.
  6. S. Gauthier and L. Thibault, Viability for constrained stochastic differential equations, Differential and Integral Equations 6 (6) 1395-1414.
  7. I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus, Springer, Berlin-New York 1988.
  8. M. Kisielewicz, Viability theorems for stochastic inclusions, Discuss. Math. Diff. Incl. 15 (1) (1995), 61-75.
  9. T. Kurtz and Ph. Protter, Weak limit theorems for stochastic integrals and stochastic differential equations, Ann. Probab. 19 (3) (1991), 1035-1070.
  10. F. Lundberg, I, Approximerad Framställning av Sannonlikhetsfunktionen, II, A°terförsäkering av Kollektivresker, Almqvist and Wiksell, Upsala 1903.
  11. L. Mazliak, A note on weak viability for controlled diffusion, Prepublications du Lab. de Probab. Universite de Paris 6, 7, 513 (1999).
  12. M. Michta, A note on viability under distribution constrains, Discuss. Math. Algebra and Stochastic Methods 18 (2) (1998), 215-225.
  13. S.S. Petersen, Calculation of ruin probabilities when the premium depends on the current reserve, Scand. Act. J. (1990), 147-159.
  14. Ph. Protter, A connection between the expansion of filtrations and Girsanov`s theorem, Stochastic partial differential equations, Lecture Notes in Math. 1930 Springer, Berlin-New York, (1989), 221-224.
  15. Ph. Protter, Stochastic Integration and Differential Equations, Springer, Berlin-New York 1990.
  16. M. Yor, Grossissement de filtrations et absolue continuite de noyaux, Springer, Berlin-New York, Lecture Notes in Math. 1118 (1985), 6-15.
Pages:
249-260
Main language of publication
English
Received
2000-09-10
Published
2000
Exact and natural sciences